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gelassen habe – er hat seinen Unmut darüber regelmäßig zum Ausdruck gebracht (und das

zu Recht!) –, so glaube ich doch, dass das Ergebnis insbesondere durch sein Mitwirken an

Qualität gewonnen hat. Ihm und mir, aber sicherlich auch allen anderen, die an ähnlichen

Theorien arbeiten, steht eine Theorie der Unsicherheiten vor Augen, die belastbar und

allgemeingültig, aber eben auch elegant und allgemeinverständlich ist. Allein der Umfang
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darzulegen. Mir war das bereits vor ihm klar, aber ihm muss zugutegehalten werden,



dass er bis zuletzt an meine Fähigkeiten geglaubt hat. Auch von Ryan Martin habe ich
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XI

Zusammenfassung

Numerische Simulationen sind ein integraler Bestandteil technischer Entwurfsprozesse für

verschiedenste Arten von Systemen. Die dazu verwendeten Modelle zeichnen sich häufig

dadurch aus, dass sie eine Vielzahl von Effekten berücksichtigen, die eine möglichst große

Realitätsnähe zum Ziel haben. Aufgrund ihrer stetigen Weiterentwicklung und der damit

einhergehenden zunehmenden Berücksichtigung auch weniger einflussreicher Effekte und

Dynamiken wächst die Komplexität dieser Simulationsmodelle meist kontinuierlich.

Beim Abgleich solcher Modelle mit Messdaten aus den abbgebildeten physikalischen

Systemen sind zwei Effekte häufig zu beobachten. Zum einen ist die präzise Bestimmung

bzw. die Spezifikation aller darin enthaltenen Parameter aus verschiedenen Gründen oft

nicht möglich – teilweise drücken diese auch überhaupt keine physikalischen Größen aus, die

sich z.B. messen ließen. Zum anderen beinhalten viele physikalische Prozesse ein natürliches

Maß an natürlicher Variabilität, die sich auch mit hochgenauen deterministischen Modellen

nicht beschreiben lässt. Sollen nun die realen Messungen zur Kalibrierung der unbekannten

Parameter verwendet werden, ist offensichtlich, dass verrauschte Daten niemals eine

exakte Bestimmung erlauben. Dadurch bedingt können wiederum keine beliebig genauen

Aussagen, insbesondere Vorhersagen, über das Systemverhalten getroffen werden. Solche

Beobachtungen bieten einen direkten Zugang zur Unsicherheitsanalyse, die zum Ziel hat,

ebendiese Unsicherheiten zu beschreiben, zu quantifizieren und damit zu rechnen.

Diese Arbeit beschäftigt sich mit possibilistischen, d.h. möglichkeitsbasierten, Methoden

zur statistischen Inferenz mit unscharfen Wahrscheinlichkeiten und ist einem jungen Teil-

gebiet der Statistik und Unsicherheitsforschung zuzuordnen, welche ihren Ursprung in

der Evidenztheorie nach Dempster und Shafer, aber auch in der Theorie der unscharfen

Mengen von Zadeh hat. Dazu wird ein ganzheitlicher Ansatz verfolgt, der eine solide

mathematische Basis mit einer praktischen Umsetzung verknüpft. In diesem Sinne liefert

diese Arbeit einen Beitrag zur angewandten Theorie der unscharfen Wahrscheinlichkeiten,

indem sie theoretische und numerische Erkenntnisse mit Anwendungen aus den Ingenieur-

wissenschaften verknüpft und aufzeigt, wie possibilistische Methoden gewinnbringend dort

eingesetzt werden können.

Im ersten Kapitel der Arbeit wird die Möglichkeitstheorie historisch und philosophisch in die

Theorie der Unsicherheitsanalyse bzw. in die zugrundeliegende Statistik eingeordnet. Die

verschiedenen Arten von Unsicherheiten, insbesondere epistemische und aleatorische, wer-

den erörtert, und es werden verschiedene mathematische Beschreibungsformen – Intervalle,

scharfe und unscharfe Wahrscheinlichkeiten, und sogenannte Möglichkeiten – erläutert.

Der grundlegenden Behauptung des ersten Kapitels, nämlich dass die Möglichkeitstheorie

sich zur Beschreibung von unscharfen Wahrscheinlichkeiten, also Mengen von Wahrschein-

lichkeitsmaßen, eignet, wird sodann im zweiten Kapitel nachgegangen. Beginnend mit

einem axiomatischen Aufbau der Möglichkeits- oder Possibilitätstheorie wird diese auf
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vielfältige Weise in Bezug sowohl zur klassischen Wahrscheinlichkeitstheorie als auch zu an-

deren Theorien zur Beschreibung unscharfer Wahrscheinlichkeiten gesetzt. Ein erstes Haup-

tresultat ist hierbei die (Imprecise-Probability-to-Possibility-)Transformationsvorschrift,

die sich mithilfe weniger fundamentaler Prinzipien motivieren lässt und es erlaubt, ebendiese

unscharfen Wahrscheinlichkeiten possibilistisch zu beschreiben.

Diese Transformationsvorschrift stellt auch im Weiteren, insbesondere im dritten Kapitel,

ein essentielles Werkzeug im Umgang mit unscharfen Wahrscheinlichkeiten dar. Dort

wird aufgezeigt, wie sich verschiedenste Arten von (unscharf-)probabilistischen Infor-

mationen, z.B. stochastische Dominanz, unscharfe Erwartungswerte, aber auch präzise

Wahrscheinlichkeitsverteilungen, oder eben die Abwesenheit solcher Informationen model-

lieren lassen. Weiterhin wird aufgezeigt, wie sich auf Basis des neu entwickelten, impliziten

Erweiterungsprinzips mit Möglichkeitsverteilungen rechnen lässt, wie sich diese kombinieren

lassen und wie sich verschiedene Arten von Abhängigkeiten beschreiben lassen.

Diese Vorüberlegungen bereiten die Grundlage für eine neue Theorie possibilistischer

Inferenzmodelle im vierten Kapitel. Diese bilden den Übergang zur Statistik und erklären,

wie sich Informationen aus Daten gewinnbringend in possibilistischen Beschreibungen ver-

wenden lassen. Der Zusammenhang zwischen jenen Modellen und diesen Beschreibungen

bildet der sogenannte Pivot-Schritt, welcher klassische Konzepte der (allgemeinen) Inferenz-

modelle nach Martin und Liu und der Möglichkeitstheorie zusammenführt und dadurch

einen neuartigen Zugang zur Statistik – insbesondere der frequentistischen – schafft.

Ein Schwerpunkt dieser Arbeit ist die numerische Umsetzung der possibilistischen Un-

sicherheitsanalyse, die auf mehrere Arten erfolgen kann, z.B. mittels sampling-basierter

oder intervall-basierter Verfahren. Beide werden im fünften Kapitel mit Bezug auf ihre Vor-

und Nachteile im Detail besprochen und es werden Methoden zur Implementierung des Er-

weiterungsprinzips und der Imprecise-Probability-to-Possibility-Transformation bzw. ihrer

Varianten vorgestellt. Zusammengefasst zeichnen sich Samplingverfahren sowohl durch ein

hohes Maß an Flexibilität als auch durch eine unkomplizierte Implementierung aus; der

Vorteil intervallbasierter Methoden liegt in konservativen Berechnunen und Abschätzungen,

die sich insbesondere zur Anwendung auf sicherheitskritische Systeme eignen.

Im sechsten Kapitel werden die theoretischen und numerischen Resultate auf ein praktis-

ches Beispiel aus der Regelungstechnik angewandt, nämlich das Filterproblem, in dem aus

Beobachtungen eines dynamischen Systems und seiner mathematischen Beschreibungen der

derzeitige Systemzustand abgeleitet werden soll. Dazu wird ein possibilistischer Partikelfil-

ter hergeleitet, wobei wiederum die vorteilhaften Eigenschaften der sampling-basierten

Umsetzung des Erweiterungsprinzips ausgenutzt werden. Anhand eines Lokalisierungs-

beispiels aus der Robotik wird die Funktionsweise dieses Filterprinzips demonstriert.

Das letzte Kapitel beginnt mit einigen Schlussbemerkungen und endet mit einer Erörterung

von möglichen zukünftigen Forschungsthemen im Bereich der Möglichkeitstheorie.
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Abstract

Numerical simulations are an integral part of the design process for various types of

systems. The models used for this purpose are often characterized by many effects they

take into account intended to achieve high-fidelity, i.e. being as close to reality as possible.

Due to continuous refinements and the ensuing increased consideration of less influential

effects and dynamics, the complexity of these simulation models usually grows over time.

Two effects can often be observed when checking such models against measured data from

the described physical systems. On the one hand, a precise specification of all parameters in

these models is often impossible for various reasons—sometimes, they do not even describe

any physical quantities that could be measured. Moreover, many physical processes contain

a natural degree of variability which cannot be described by deterministic models, not

even by highly accurate ones. If actual measurements are to be used to calibrate the

model, i.e. its unknown parameters, it is evident that noisy data will never allow an exact

inference. This inexactness, in turn, implies that arbitrarily accurate statements, especially

predictions, cannot be made about the behavior of the physical system. Such observations

provide a direct motivation for uncertainty quantification, which aims to describe, quantify,

and compute these very uncertainties.

This thesis considers possibilistic methods for statistical inference with imprecise probabili-

ties. In this sense, it belongs to a young subfield of statistics and uncertainty quantification

which has its origins in the Dempster-Shafer theory of evidence and the theory of fuzzy

sets by Zadeh. More precisely, it makes a contribution to the applied theory of imprecise

probabilities by linking theoretical and numerical insights with practical applications in

engineering and showing how possibilistic methods can be used profitably.

In the first chapter, possibility theory is contextualized historically and philosophically

among the various competing theories of uncertainty quantification and statistics. Dif-

ferent types of uncertainty, primarily epistemic and aleatory ones, are discussed, and

various mathematical frameworks for their description—intervals, precise and imprecise

probabilities, and so-called possibilities—are motivated and introduced.

The fundamental claim of the first chapter, namely that possibility theory is suitable for

describing imprecise probabilities, i.e. sets of probability measures, is then investigated

in the second chapter. Beginning with an axiomatic approach to possibility theory, it is

linked to classical probability theory and other theories of imprecise probabilities next.

The first main result is the Imprecise-Probability-to-Possibility Transformation, which can

be motivated by a few fundamental principles and allows to describe imprecise probabilities

possibilistically.

This transformation rule is also an essential tool for dealing with imprecise probabilities

in the following, especially in the third chapter. Therein, it is shown how different kinds
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of (imprecise-)probabilistic information, e.g. stochastic dominance, imprecise expected

values, and precise probabilities, or the absence of such information, can be modeled.

Moreover, it is shown how to compute with possibilities based on the newly derived implicit

extension principle, how they can be combined, and how different kinds of dependencies

between imprecise or random variables may be described.

These preliminary considerations prepare the ground for a novel theory of possibilistic

inferential models in the fourth chapter that constitute the connection to statistics and

explain how data can refine possibilistic descriptions. This connection is established via the

Pivotal Step, which brings together concepts of (general) inferential models by Martin and

Liu and of possibility theory, thereby creating a novel approach to statistics—in particular,

to frequentist inference.

This thesis also focuses on the numerical implementation of possibilistic calculus, which is

using both sampling-based and interval-based methods. Both methods are discussed in

detail in chapter five regarding their advantages and disadvantages, and methods for imple-

menting the extension principle, the Imprecise-Probability-to-Possibility-Transformation,

and its variants are given. In summary, sampling methods are characterized by a high

degree of flexibility and a straightforward implementation; the advantage of interval-based

methods lies in conservative computations, which are particularly suitable for application

to safety-critical systems.

In the sixth chapter, the theoretical and numerical results are applied to a practical

example from control engineering, namely the filtering problem, in which the current state

of a system is to be inferred from observations of a dynamic system and its mathematical

description. For this purpose, a possibilistic particle filter is derived, exploiting the

advantageous properties of the sampling-based implementation of the extension principle.

Finally, a localization example from robotics is intended to demonstrate the properties

and functionality of this filter.

The final chapter begins with some concluding remarks and ends with an outlook on

potential future research topics in the area of possibility theory.
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Chapter 1

Introduction

Es geht um die Verlässlichkeit von Risikoannahmen

und um die Verlässlichkeit von Wahrscheinlichkeits-

analysen. Denn diese Analysen bilden die Grundlage,

auf der die Politik Entscheidungen treffen muss, ...

Angela Merkel,

Der Weg zur Energie der Zukunft (June 9, 2011)

Nobody is perfect. There is, perhaps, no better way to describe the raison d’être of the

field of uncertainty quantification (UQ) than this century-old saying.

Throughout the entirety of their existence, humans have grappled with their ignorance

producing such famous sayings as ‘I know that I know nothing’, which is attributed to

Socrates and has found its way into our time. Socrates’ method of choice for reducing his

ignorance—and that of his contemporaries—was reportedly to ask many questions. In his

view, the exchange of information and knowledge, and the subsequent questioning of one’s

own beliefs, was fundamental for reducing ignorance or uncertainty.1

On an abstract level, we might all be considered agents in a world whose past, present

and future are, to a large extent, unknown to us. In order to successfully navigate it, we

require mental models of this world that we are a part of—not least to anticipate the

consequences of the decisions we make and, more importantly, of the actions we take. We

calibrate these mental models with the evidence we obtain via our senses.

This evidence, however, may be misleading, and the resulting beliefs and predictions might

turn out to be erroneous: The sky might have been bright and clear for the past four weeks

leading one to predict that it will also be like this tomorrow—only for them having to

cancel a hiking trip at the last minute. Alternatively, the available evidence might allow for

several competing models to be true: A simple headache could be caused by dehydration,

1Hadot, P.: Philosophy as a Way of Life. Wiley, 1995.
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a brain tumor, or something entirely else.2 In other words, there is uncertainty of varying

degrees associated with a process generating evidence, e.g. the weather, and there is

uncertainty associated with the inferences this allows one to draw, e.g. a medical diagnosis.

Often, the human brain learns from evidence and accounts for some of the implied

uncertainty by itself—even without much training. We know from experience that the

weather of the past is not a definitive indicator of that of the future, and we are aware

that not every headache is a death sentence. Nevertheless, with the ever-increasing efforts

in developing artificially intelligent machines3 and a future that could see robots making

essential decisions without human supervision,4 one should simultaneously devise ways to

teach them how to reason under uncertainty—preferably in a comprehensive manner, such

that human decision-making may also benefit. This bonus would not be a detriment, for

there are many examples where the human perception of risk and uncertainty failed, e.g.

in the Challenger disaster.5

Whereas humans typically do not have to rely on pure numbers for reasoning under

uncertainty, mathematics is the traditional language of machines and computers. But how

should we measure/quantify (un-)certainty, i.e. how should we put a number on it, and,

more importantly, what conclusions should we draw concerning our beliefs about the past

and present, and for our predictions of the future, i.e. how should we adjust that number,

e.g., in the light of new evidence?

UQ can be summarized as answering precisely these questions. However, it requires a

mathematical formalism, a language of uncertainty in which to ask these questions and

formulate the answers.

1.1 Types of Uncertainty

The term ‘uncertainty’ generally refers to a property that is attached to hypotheses and

predictions about the world’s past, current or future state. It is usually not ontological

but rather an expression of ignorance—perhaps with the notable exception of quantum

physics. The reasons for uncertainty are manifold, and two are of main interest to the

following discussion.

The most well-known type of uncertainty concerns the results of coin tosses and dice rolls,

the winning numbers in the lottery, the exact number of cars that will pass through some

2https://www.sciencedaily.com/terms/headache.htm (accessed on December 21, 2021)
3https://www.zeit.de/mobilitaet/2021-11/autonomes-fahren-kuenstliche-intelligenz-

verkehrssicherheit-unfall (accessed on December 21, 2021)
4https://www.philomag.de/artikel/algorithmen-entscheiden-nichts (accessed on December

21, 2021)
5https://spectrum.ieee.org/the-space-shuttle-a-case-of-subjective-engineering (ac-

cessed on December 21, 2021)
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street tomorrow morning, or the exact amount of rain on a particular day in the future in

Stuttgart. For instance, in the first case, it is not unimaginable that, if one had a very

accurate model of the dice, its environment, the rolling motion, etc., one would be able

to exactly predict the number of eyes shown. However, the level of scrutiny required to

accurately predict this outcome is quasi-infeasible because it would require of level of

modeling detail that is hardly achievable in reality. Instead, one may take a broader view

and consider the dice to be subject to irreducible variability or chance expressing our

inability to precisely predict how many eyes the dice will show next. This (possibly only

perceived) randomness is often referred to as aleatory uncertainty. A useful description of

this uncertainty would identify patterns or laws governing this randomness.

Still, there are more situations unrelated to chance, where it is not possible to make a

definitive statement due to a lack of knowledge, also referred to as epistemic uncertainty.

This lack of knowledge typically concerns the past or current state of the world, e.g., the

percentage of the population with a certain blood type, with an income lower than a

certain threshold or its percentage of vegetarians. Similar to the root cause of a headache

one is experiencing on a particular day, these values do not necessarily exhibit variability:

By surveying all members of the population, one would be able to arrive at the precise

percentage but one may also estimate them with varying degrees of accuracy. Therefore,

this type of uncertainty is often referred to as reducible, which should, however, not be

mistaken for eliminability.

These two types of uncertainty are prevalent in engineering [HeltonJohnsonOberkampf04];

in practice, a mix of both these types of uncertainty is often present. As an example,

consider the result of drawing a ball from an urn with an unknown number of red and

blue balls, where some prior draws have been observed, or localization techniques based on

noisy distance measurements and triangulation, as discussed later in this thesis. However,

other types of uncertainty, stemming e.g. from the imprecision in human speech introduced

by hedge words such as ‘very’, ‘few’, or ‘huge’, may also be considered.

In conclusion, several uncertainties of different shape and form may be attached to our

models of the world. Due to these different appearances, in principle, one should be

open to the idea of describing, e.g., aleatory and epistemic uncertainty with different

languages [FersonGinzburg96]. Of course, a unification of these languages, i.e. a universal

language of uncertainty, is a desirable goal, but the biggest concern should be a faithful

description. Any mathematical formalism used to describe uncertainty should be judged

by the fidelity and usefulness of the inferences it allows one to make—just like any other

mathematical model. Indeed, the correct classification of uncertainties becomes somewhat

insignificant if one can only find a good description.
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1.2 Languages of Uncertainty

At the heart of UQ lies the question of which model ought to be used to describe

uncertainty.Mathematics allows for the formulation of many different kinds of models,

which might in its own right be referred to as the essence of science.6 Of course, it is never

expected that a model captures reality perfectly. However, different models may differ

severely in quality, and all models should be judged by their fidelity, including both a

faithful and an expressive representation.

In many disciplines, modeling is often restricted to deterministic representations of the

system under consideration. Carefully applying the bequeathed formalisms typically yields

a set of equations that describe the system under investigation. Moreover, manipulating

and solving these equations enables one to analyze the system and make, e.g., predictions

about its future behavior. Intuitively, it is clear that these results will never quite capture

all of the facets of the entire system, which is owed to simplifications in the modeling

process, e.g. linearization, a general lack of knowledge about specific sub-processes, e.g.

damping, external disturbances, unforeseen loads, and so on. Most modelers will intuitively

feel that one ought to allow for some disagreement between the model and reality. However,

how much deviation from the predicted system response is acceptable? How should noisy

measurements be included? Which value from a set of parameters that more or less

produce the measured output is correct?

Statistical modeling may be considered an extension of deterministic modeling that

addresses the mismatch between deterministic models and the world they are intended to

described.

1.2.1 Sets and Intervals

The oldest and perhaps conceptually most straightforward uncertainty description is given

by simple sets of possible values, particularly intervals. They constitute an elementary

description of uncertainty since, e.g., in the interval case, they only provide bounds

on the values of a variable. Interval analysis has found successful applications in a

variety of fields, in particular in those fields close to robotics [JaulinEtAl01] and validated

numerics [AuerKielRauh13], and will play an auxiliary role in this thesis.

Consider the floating-point representation of π on a rudimentary computer capable of

representing only integers. On such a machine, e.g., the lower and upper bounds, π ≥ 3

and π ≤ 4, could be stored. A faithful program should communicate the resulting

uncertainty concerning the area A = πr2 of a circle with a given radius of r = 2m by

returning the lower bound of A ≥ 12m2 and an upper bound of A ≤ 16m2. This would,

6https://www.zeit.de/kultur/2021-05/wissenschaft-corona-krise-modelle-forschung-

klimawandel (accessed on December 21, 2021)
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e.g., make it impossible to definitively evaluate the hypothesis A ≤ 15m2. This situation is

characterized by a (reducible) lack of knowledge relevant to the hypothesis: Even though

a definitive answer exists, it cannot be identified. If, however, the program ran on a better

computer capable of also representing the first decimal, it would be able to reduce the

uncertainty about π by bracketing it with π ∈ [3.1, 3.2] such that A ∈ [12.4, 12.8] and

arrive at the answer ‘yes’ regarding the hypothesis whether A ≤ 15m2.

The example also shows that intervals have limited expressiveness because such descriptions

do not contain additional information, e.g., about frequencies of occurrence in a process

subject to variability. These properties eliminate the need to think about degrees of

uncertainty and make intervals suitable to describe extreme/severe uncertainty when

not much else can be said about a variable, making it particularly attractive to describe

entirely epistemic uncertainty as in the above example.

1.2.2 Probability Theory

Probability is widely accepted as the appropriate description of variability and randomness.

The description of chance, particularly of games of chance, was the driving force behind

the development of probability theory, and the notions of chance and probability were used

interchangeably by early scholars, such as Laplace and Bayes. The latter unequivocally

stated that “by chance I mean the same as probability” [Bayes63, p. 376].

One of the earliest problems concerned the question of how to fairly split the money pool

if a game consisting of several rounds had to be canceled prematurely, e.g., if, in a best

of five between two opponents, where one would have to win at least three rounds, the

game is canceled after player A has won two rounds, and player B has won one round only.

The outcome of these rounds, and thus of the game, is subject to uncertainty because, of

course, the outcomes of individual rounds, and of the game, cannot be predicted precisely.

Experience suggests that a definitive answer would not reflect reality. If it did, the purpose

of the game would arguably be defeated.

Probabilistically, one could describe this by the probability p ∈ [0, 1] that player A wins

the next round, and the corresponding probability 1− p of the counter-event, i.e., player

B wins the round. The minimal consensus is that p = 1 indicates total certainty that

player A will win and, conversely, p = 0 that player A will lose. Especially degrees

between zero and one can be interpreted in various ways, e.g., as limit frequencies or as

expected earnings. In the first case, they denote the percentage of rounds player A will

win in a hypothetically infinite sequence of rounds. In the second case, it is, the prize a

gambler would be willing to pay for a bet returning one Euro if player A wins (and zero

Euros otherwise). This prize can, of course, be subjective; therefore it is often referred

to as the subjectivist interpretation of probability, whereas the former is usually referred

to as the frequentist interpretation. Even though both interpretations can lead to the
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same description, they differ in what they mean by probability. Moreover, this is not

an exhaustive list of the various interpretations of probability that have been proposed

throughout history [Hájek19].

1.2.3 Imprecise Probabilities

The claim of many probabilists, more precisely that of Bayesians, is that probability is

the only language suitable to describe uncertainty, regardless of its (aleatory or epistemic)

nature. When chance or randomness is the cause of uncertainty, it is widely accepted

that probability is indeed the appropriate measure to describe the variability sufficiently.

However, concerning epistemic uncertainty and personal belief, the matter is entirely

different. For an exemplary discussion, refer to [Shafer90] and the follow-up papers in the

same issue.

Sometimes it is not straightforward to find a precise probabilistic model if the relevant

information is unavailable. For instance, in the above problem of the discontinued game of

chance, the actual value of p is unknown.

The frequentist interpretation would require them to have played an infinite amount of

rounds prior to this point in order to postulate a precise probabilistic model, i.e., in order

to specify p, and ultimately, how to split the pot. But the only evidence is given in the

form of three rounds (player A winning twice, player B winning once). Addressing this

issue, frequentists would rely, e.g., on hypothesis tests and confidence intervals to express

their uncertainty about p.

However, the subjectivist interpretation views probability as an expression of personal

belief that everybody is allowed to have about virtually all hypotheses—as long as it

adheres to the laws of probability. One way to infer this belief is by offering gambles to

the so-called subject and asking them for a fair price. For instance, if one explained the

above game of chance to a subjectivist, more precisely to a Bayesian, and then proposed a

gamble that pays one Euro if player A wins and nothing otherwise, they would have to be

able to state a price they would be willing to pay—under the condition that they would

also have to be willing to sell that gamble for the same prize to somebody else. That is,

they would be willing to buy the gamble for p Euros from someone else or sell it to them

for p Euros. Seeing that the game’s rules do not favor one player from the start, they

would typically assume that p = 0.5 Euros is a fair price—both for selling and buying this

gamble. They would expect neither to lose nor to win money by offering or taking this

bet. Both outcomes (player A or B winning) are—in the absence of any evidence of the

game being fixed or some player having a superior strategy—equally likely. Upon seeing

the results of one or several rolls, they might then update their belief according to Bayes’

theorem. Seeing that player A has won once more than player B would then alter the

belief in A’s favor, which would usually result in p > 0.5.
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It has, however, been argued that human belief does not necessarily obey the laws of

probability [Bradley19], i.e. it does not always adhere to its additive structure, and the

Bayesian approach does not accurately describe how humans reason under uncertainty.

A possible fix for this issue is a normative view of Bayesian belief: Rational decision-

makers should form their beliefs and act according to the laws of probability (and of

Bayes’ Theorem). Failing to do so would make them vulnerable to a so-called Dutch

book [Vineberg16] potentially losing them an infinite amount of money to a cleverer

gambler.

Still, this leaves room for criticism, in particular of the role of the prior belief,

ultimately leading to such undesirable phenomena as the False Confidence Theo-

rem [BalchMartinFerson19], which will be explained in Chapter 4. Many more examples

can be construed that point out possible deficiencies of probability as a representation

of personal belief but shall not be repeated here.7 As a result, many alternative theories

have emerged in order to resolve these issues.

A less rigorous subjectivism is advocated by the Society for Imprecise Probabilities: Theory

and Applications (SIPTA8). In his seminal book [Walley91], Walley, one of its forefathers,

argues in favor of expressing one’s lack of knowledge via upper and lower previsions, a

generalization of expected values that can be inferred from not necessarily coinciding

maximum acceptable buying prices and minimum acceptable selling prices for all kinds of

gambles. These imply, amongst others, upper and lower bounds on probabilities, so-called

imprecise probabilities.

A related theory enjoying broad appreciation in many communities9 is the Dempster-Shafer

Theory of Evidence. Building upon ideas of Dempster [Dempster67], Shafer [Shafer76]

proposed a paradigm shift in statistics towards two measures of belief instead of just a

single measure: The belief, which accounts for all the evidence that directly supports a

proposition, and the plausibility, which accounts for all the evidence that does not explicitly

rule this proposition out. The basic belief function is used to compute these measures,

and by applying Demster’s rule of combination (which he shows to be a generalization of

Bayes’ theorem), one can combine multiple pieces of evidence and refine one’s personal

belief.

While Shafer initially intended to develop a theory of belief, i.e. for quantifying epis-

temic uncertainty, it quickly became apparent that the framework he proposed could

be used in order to also construct a more general theory of imprecise probabilities

by viewing the belief measure as a bound for the lower probability and the plausi-

bility measure as a bound for the upper probability. This inspired several other theo-

7A non-exhaustive collection of examples may be found under https://en.wikipedia.org/wiki/

Category:Probability_theory_paradoxes (accessed December 24, 2021)
8https://www.sipta.org/ (accessed December 24, 2021)
9Shafer himself discusses this success in [Shafer16].
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ries, including, amongst others, probability boxes (p-boxes) [BeerFersonKreinovich13],

monotone measures [BronevichKlir10], and clouds [Neumaier04], which are all re-

lated [KlirWierman99, DesterckeDuboisChojnacki08, TroffaesMirandaDestercke13]. The

historical development can partially be traced in [YagerLiu08] and a more recent account

thereof is to be found in [AugustinEtAl14].

In any case, the unique role of probability theory as the sole language of uncertainty,

particularly of epistemic uncertainty, is disputed in the scientific community.

1.2.4 Possibility Theory

Possibility theory takes a unique role in the historical development, which is sketched

above, as it originated from a different idea, namely that of fuzzy sets introduced by Zadeh

in his seminal paper [Zadeh65]. Only later, it was discovered that certain aspects also fit

into the framework of imprecise probabilities [DuboisPrade92].

Zadeh, troubled by entirely different issues than those that led Shafer to develop his

theory of evidence, had proposed fuzzy sets as a natural way to model imprecision in

human speech—yet another source of uncertainty distinct from aleatory and epistemic

uncertainty. The fundamental idea is to admit gradual set membership instead of the

classical notion of in or out. Therefore, he proposed a fuzzy set membership function, in

essence, a generalization of the indicator function, which assigns degrees of membership

to its elements. For instance, in the fuzzy set of ‘warm temperatures’, the temperatures

of 0, 10, 20, 30 and 40 degrees Celsius might be associated with a membership degree

of 0, 0.3, 0.8 1 and 0.5, respectively. This idea leads to a very different theory that has

found many applications in logic [Zadeh88] but also engineering [Hanss05].

Again, the idea of a theory of possibility, viewing membership functions as the contour

function of a possibility measure, put forth by Zadeh [Zadeh99], was not intended as a

language for aleatory or epistemic uncertainty. In fact, tacing heavy opposition from

statisticians saying that fuzzy set theory was superfluous and could not solve any prob-

lems manageable by probability theory, Zadeh always insisted on the distinct nature of

uncertainty and imprecision in human speech, claiming that probability theory and fuzzy

set theory are “complementary rather than competitive”.10 Nevertheless, this criticism

also marks the beginning of the liaison between fuzzy sets and uncertainty theories.

Coming from an entirely different angle, namely that of statistics, Shafer had already

expended an entire chapter of his book to the discussion of consonant belief functions, argu-

ing that focal masses stemming from a simple piece of evidence should be nested [Shafer76,

Chapter 10]. Moreover, he showed that, in this case, the corresponding plausibility measure

10An example of the scientific debate between the two factions can be found in [LavioletteEtAl95] and

the follow-up articles, also by Zadeh [Zadeh95], in the same issue.
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must be maxitive, i.e. the plausibility of the union of two events must be the maximum

of their respective plausibilities, as opposed to the additivity of probability. Since the

possibility measure proposed by Zadeh obeys the same law, the two measures are identical

from a mathematical point of view. Subsequently, Dubois and Prade proposed viewing the

possibility measure as an upper bound for the probability [DuboisPrade92] and advanced

and formalized possibility theory with considerable effort and success as a theory of

imprecise probabilities in numerous articles and books, e.g. [DuboisPrade88].

It should be noted that, nowadays, one can distinguish between two branches of possibility

theory [DuboisPrade98]. To summarize, the qualitative branch is still very much connected

to fuzzy sets, fuzzy logic and information theory, whereas the quantitative branch is

concerned with UQ. This thesis focuses on the latter.

1.3 Possibilistic Uncertainty Quantification

Adopting this description-based point of view, this thesis does not discuss uncertainty and

its correct quantification. It is a discussion of the language of possibility theory and what

possibilistic models can describe. What possibility itself is, and whether it is suitable for

quantifying uncertainty, is nicely summarized by

“Probability is everything that fits the axioms.”11

which is equally applicable to possibility. It is a language—a model that, under certain

conditions, happens to describe the world.

To make this point even clearer: Partial differential equations, too, are a language. In

mechanical engineering, they can be used to derive finite element methods that can

successfully predict the behavior of mechanical systems. In other disciplines, they serve

other purposes. The Maxwell equations describe electromagnetism, and the Schrödinger

equation models quantum mechanical systems. Nevertheless, partial differential equations

do not rely on these applications to exist. They can be postulated independently.

Consequently, this thesis derives possibility theory from some definitions, similar to the

Kolmogorov axioms. It is, however, clear that an application to UQ is intended—but

not in the usual way, as a description of chance of belief. It should be understood as

an extension of probability theory, intended to describe uncertainty about probabilistic

descriptions, i.e. to describe imprecise probabilities, and the inferences it enables one to

draw, i.e. the inferential models that can be derived from such descriptions of imprecise

probabilities. The precise meaning of ‘possibility’ in this thesis is entirely dependent

on the meaning of probability. The only further prerequisite is the acceptance of the

11Scott Ferson (personal communication, 2020)
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existence of distributional imprecision in statistical models. This will also yield two more

interpretations of possibility: (data-based) confidence and predictions.

1.4 Composition and Contributions of this Thesis

Concluding this brief introduction and overview, the remainder of this thesis is organized

as follows.

Chapter 2 presents possibility measures and probability measures as members of a larger

class of capacities. This discussion results in the interpretation of possibility theory as

a theory of imprecise probabilities under the fundamental concepts of consistency and

specificity. Finally, the Imprecise-Probability-to-Possibility Transform, the fundamental

tool for describing imprecise probabilities via possibilities in the remainder of this thesis, is

derived from some principles. The most important conclusion of this chapter will be that

possibility theory is well equipped to model the situation when the available information

does not warrant a precise probabilistic model.

Chapter 3 further explores the role of possibilistic descriptions by some practical applica-

tions of this transform—in particular, how to reason with imprecise (random) variables

that a possibility distribution can model. This includes the fundamental extension of such

distributions (in a new generality) and their relation to stochastic dominance and imprecise

expectations. Finally, dependency and interaction between such variables are investigated

by reformulating some well-known dependency concepts from the theory of (imprecise)

probabilities in a possibilistic manner.

Chapter 4 presents a theory of possibilistic statistics building upon the existing theory

of inferential models. The different style of this chapter, including more direct quotes

and philosophical arguments, is owed to the relative novelty of the topic. Possibilistic

inferential models are, to the author’s knowledge, little investigated; therefore, it aims at

providing a rigorous theoretical basis, which, in turn, impedes an in-depth discussion of

many advanced details. In this chapter, two well-known concepts from frequentist statistics,

confidence and predictions, are revisited from a possibilistic point of view. It is shown how

possibility theory offers a straightforward way of reasoning with them—suggesting that

frequentist inference is, at heart, imprecise probabilistic. The novel tool for this purpose is

the Pivotal Step (and its variants).

This thesis’s most crucial finding is that reasoning with possibilities, confidence and

predictions alike reduces to a few fundamental mathematical operations, most notably

the membership transform and the extension principle. Chapter 5 discusses an efficient,

sampling-based and a reliable, interval-based numerical strategy to implement them.

The accompanying examples throughout Chapters 2-5 are intended to show how the

discussed concepts can be used in UQ.
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Chapter 6 of this thesis concerns the application of possibilistic statistics to dynamical

systems. The development of a (recursive) possibilistic (particle) filter in this chapter

makes extensive use of the previous chapters. More importantly, it shows how possibility

theory may be applied fruitfully to engineering, in this case to robotics, and how it

can compete with existing Bayesian approaches in terms of expressiveness and ease of

implementation as demonstrated by a final robot localization example.

The thesis concludes with a final discussion and outlook in Chapter 7.
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Chapter 2

Possibilities and Imprecise

Probabilities

Wann immer einen die Dinge erschreckten, sei es

eine gute Idee, sie zu messen.

Daniel Kehlmann, Die Vermessung der Welt

This chapter is intended to provide an axiomatic approach to possibility theory and

to introduce the basic notation, which has been adapted to be consistent with texts

on probabilistic uncertainty quantification [Sullivan15]. A more thorough exposition

of classical measure theory may be found in many standard works [Halmos13], and

a more rigorous axiomatic approach to possibility theory is, e.g., provided by De

Cooman [De Cooman97a, De Cooman97b, De Cooman97c].

2.1 Probability and Possibility Measures

In order to be able to relate probability and possibility measures to one another, initially,

it is necessary to find a common framework. This is, e.g., accomplished through the

notion of capacities [Choquet54], also known as fuzzy measures [KlirWierman99]. These

are sufficiently general to yield both probability and possibility measures as special cases,

thus, naturally lending themselves to this cause, and, at the same time, intuitive to

understand. Other common frameworks, which would be equally suitable, include, e.g.,

random sets [Dempster67] and the Dempster-Shafer theory of evidence [Shafer76], or lower

previsions [Walley91].
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2.1.1 Measurable Spaces

Consider some unknown (past, present, or future) state of the world that one might

wish to talk about. By definition, the universal space, universe of discourse or sample

space Ω must be an exhaustive description thereof and contains a collection of all possible

states, which can occur. These are the elementary events ω ∈ Ω. A so-called event is a

subset E ⊆ Ω of the sample space. For instance, events concerning the external wind load

on some structure can be expressed through subsets of the universal space Ω = {ωl : l ∈ R}
composed of the elementary events

ωl : ‘The wind load on the structure is lN.’ (2.1)

for l ∈ R. The event that the load exceeds 10 N is given by E = {ωl : l > 10}.
When Ω is finite or countable, one usually considers the set of all possible events, i.e. the

power set 2Ω = {E : E ⊆ Ω}. However, when Ω is uncountably infinite, it makes sense

to restrict oneself to only talk about a special class of subsets, so-called measurable sets.

These measurable sets are collected in a σ-algebra Σ ⊆ 2Ω, which, by definition, contains

the empty set, and is closed with respect to countable unions and complementation. This

definition of a σ-algebra ensures that one can consider con- or disjunctive combinations

of events and their opposites, i.e. the standard set operations, union, intersection and

complement, on measurable sets and, again, obtain valid events, i.e. measurable sets. The

tuple (Ω,Σ) is called a measurable space.

The Borel σ-algebra is the smallest σ-algebra on the universal set R and contains all open

intervals (a, b) for a, b ∈ R with a < b. It includes many practically relevant sets: open,

closed and one-sided intervals, unions and intersections thereof, single numbers, etc. It

can, furthermore, easily be restricted to subsets V ⊆ R or extended to higher dimensions,

i.e. to V ⊆ RD. The Borel σ-field corresponding to V ⊆ RD is denoted by B(V).

Furthermore, suppose that (Ω′,Σ′) is a second measurable space, e.g. (Ω′,Σ′) = (V,B(V)).

A map f : Ω → Ω′ is called a (Σ-Σ′-)measurable function if the pre-images of all B ∈ Σ′

are measurable with respect to the original measurable space (Ω,Σ), i.e. if f−1(B) ∈ Σ.

The concept of measurable functions is crucial for the definition of imprecise variables

in Chapter 3. Most importantly, it enables one to express events of the form E : f ∈ B

which is an abuse of notation for E = f−1(B) = {ω ∈ Ω : f(ω) ∈ B}. For instance, in

the example above, the event concerning the external wind load can be expressed more

concisely as L > 10 for the (measurable) function L : ωl �→ l.

The measurability of all sets and functions in this thesis is usually not considered explicitly

unless it is essential, for it would seriously impede the readability of this thesis. In any

case, albeit these definitions being very technical, they ensure a thorough definition of

probability and possibility measures, and of imprecise variables.
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2.1.2 Capacities

In order to be able to evaluate an event, its ‘size’ must be evaluated, a task that is

accomplished by capacities, a generalization of measures.

A capacity is a function M : Σ → R on the measurable space (Ω,Σ) that assigns a numerical

value to every measurable set in Σ. Well-known examples include the cardinality, i.e. the

number of elements in a set, and the Lebesgue measure, i.e. the length, area, or volume of

subsets of the Euclidean space RD. Such capacities may have a variety of properties.

Non-Negativity. Every measurable set E ∈ Σ has a non-negative capacity M(E) ≥ 0.

Normality. The universal set has capacity M(Ω) = 1.

Completeness. The empty set has capacity M(∅) = 0.

Boundedness. The capacity of any measurable set E ∈ Σ is bounded by M(E) <∞.

Monotonicity. For any two measurable sets E1, E2 ∈ Σ with E1 ⊆ E2, their capacities

satisfy M(E1) ≤ M(E2).

2-Monotonicity. For any two measurable sets E1, E2 ∈ Σ, their capacities sat-

isfy M (E1) + M (E2) ≤ M(E1 ∪ E2) + M (E1 ∩ E2).

Self-Duality. The complement ¬E of a measurable set E ∈ Σ has capacity M(¬E) =
1−M(E).

An example of a capacity that possesses all of these properties is the probability measure,

but this thesis also considers other types of capacities. In any case, all investigated

capacities will be non-negative, normal, complete, bounded and monotone.

These are intuitive properties, considering that capacities are intended to quantify the

size of sets. Any set should be at least as big as any of its subsets; the set containing

‘nothing’, the empty set, should have size zero; and the size of the largest set, the universal

set, should be normalized to one, such that the size of any other set is to be understood

as a percentage of the size of Ω. In particular, this allows for intuitive comparisons both

between measurable sets and between different capacities.

Notice that not all mnonotone capacities are 2-monotone. On the contrary, 2-monotonicity

is a stronger form of monotonicity which follows by considering

M(E1) ≤ M(E1 ∪ E2) + M(E1 ∩ E2)−M(E2) = M(E2) (2.2)

since E1 = E1 ∩ E2 and E2 = E1 ∪ E2 for E1 ⊆ E2. Their generalization are so-called n-

monotone and ∞-monotone measures [AugustinEtAl14]; the latter are also called belief

functions.
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What truly distinguishes capacities from each other, and, e.g., constitutes the fundamental

difference between probability and possibility measures, is how monotonicity is achieved.

In classical measure theory, all measures are σ-additive12, yielding the probability measure

in the normalized case. By relaxing the required additivity to monotonicity, and by

generalizing the notion of a measure, other choices, such as (maxitive) possibility measures

emerge. However, these measures are not generally self-dual anymore, as opposed to the

probability measure, and dual measures, such as the (minitive) necessity measures, can be

found. A recent in-depth discussion of capacities is provided by Denneberg [Denneberg94],

and by Bronevich and Klir [BronevichKlir10] for 2-monotone measures in particular.

2.1.2.1 Interval Spaces

The perhaps most basic capacities are considered in interval analysis [JaulinEtAl01] where

the information about the outcomes in Ω is simply modeled by a set T ∈ Σ (usually an

interval or a higher-dimensional box) to which the final outcome is certain to belong—

without any further grading. The corresponding capacities ΠBool. : Σ → [0, 1] and NBool. :

Σ → [0, 1], are the (Boolean) possibility and necessity measures, respectively—the same

names that are given to the capacities in possibility theory, and indicate the close connection

of the two theories. They are given by

ΠBool.(E) =

{
1 if T ∩ E �= ∅ and

0 otherwise
and NBool.(E) =

{
1 if T ⊆ E and

0 otherwise
(2.3)

for all E ∈ Σ. It is easy to check that these capacities are non-negative, normal, complete,

bounded, monotone,13 and dual in the sense that ΠBool.(E)+NBool.(¬E) = 1 for all E ∈ Σ.

2.1.2.2 Probability Spaces

According to the well-known Kolmogorov axioms, a probability measure P : Σ → [0, 1]

is a non-negative and normal capacity on the measurable space (Ω,Σ) that additionally

exhibits

σ-Additivity. For unions of countable collections of pairwise disjunct measurable

sets Ek ∈ Σ, their probability is given by P
(⋃

k≥1Ek
)
=
∑

k P (Ek).

If Ω = {ω1, ω2, . . .} is a discrete space, then every probability measure is associated with a

probability mass function p : Ω → [0, 1] with
∑

ωi∈Ω p(ωi) = 1 and

P(E) =
∑
ωi∈E

p(ωi) (2.4)

12In fact, 2-monotonicity is a weaker version of (σ-)subadditivity.
13The necessity measure is also 2-monotone.
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for all E ∈ Σ. If Ω is continuous, then this concept may be generalized to a probability

density function, see Section 3.1.4. The triple (Ω,Σ,P) is called a probability space.

From these axioms, the completeness, boundedness, (2-)monotonicity and self-duality

of the probability measure follow immediately.14 The space of all probability measures

on (Ω,Σ) is denoted as P(Ω,Σ).

The conditional probability of E1 ∈ Σ given E2 ∈ Σ with P(E2) > 0 is

P(E1|E2) =
P(E1 ∩ E2)

P(E2)
(2.5)

which can be interpreted as restricting the sample space Ω to the elementary events in E2.

The two events are called stochastically independent if P(E1 ∩ E2) = P(E1)P(E2), which

yields e.g. P(E1|E2) = P(E1). Knowledge or assumptions about the occurrence of E2 do

not change the probability of E1, and vice versa.

This very basic introduction of Boolean possibility and necessity measures, and of

probability measures will suffice for the purpose of this thesis. The following expo-

sition of possibility theory may also be understood as a synthesis of interval analy-

sis and probability theory, where probability mass is attached to nested collections

of sets as opposed to the elementary events. A more general version thereof is the

Dempster-Shafer Theory of Evidence [Shafer76] and the related theory of belief func-

tions [DuboisPrade90, Cuzzolin13, MontesMirandaVicig19].

2.1.2.3 Possibility Spaces

The standard approach to possibility theory as discussed below well reflects that its roots

lie in fuzzy set theory [Zadeh99] which is fundamentally based on so-called membership

functions [Zadeh65, DuboisPrade20] that describe the degree of belonging to a fuzzy set.

Elementary Possibilities The elementary possibility function π : Ω → [0, 1] on the

measurable space (Ω,Σ), is the atom, i.e. the basic building block, of possibility theory. Its

definition is commensurate with that of a fuzzy membership function: It need not satisfy

many requirements, except that it be measurable and normal, i.e. that

sup
ω∈Ω

π(ω) = 1. (2.6)

In essence, all of (quantitative) possibility theory is connected to describing, inferring and

combining these functions, reasoning with them, or manipulating them in more elaborate

ways. They are also the primary objects of discussion in this thesis. The triple (Ω,Σ, π) is

called a possibility space.

14The proofs of these properties appear in every standard text book on probability and statistics [Shao03].
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Two special classes of elementary possibility functions deserve special mention: If an

elementary possibility function is one everywhere on Ω, it is called vacuous; if it is

exclusively {0, 1}-valued it is called quasi-vacuous. Naturally, the latter definition includes

the former, i.e., quasi-vacuous elementary possibility functions are also vacuous.

Possibility Measure Following standard expositions of possibility the-

ory [DuboisPrade88, KlirWierman99], every elementary possibility function also induces

a possibility measure Π : Σ → [0, 1] on (Ω,Σ). The possibility of a measurable set E ∈ Σ

is simply defined as the supremum of its elementary possibilities, i.e.

Π (E) = sup
ω∈E

π(ω), (2.7)

This definition is also consistent with the naming of the elementary possibility function;

the possibility of an elementary event ω ∈ Ω is given by Π({ω}) = π(ω).

The positivity, normality and boundedness of the possibility measure follow directly from

the positivity, normality and boundedness of the elementary possibility function.

Regarding the completeness of the possibility measure it is easy to verify that, by conven-

tion,

Π(∅) = sup
ω∈∅

π(ω) = sup π(∅) = sup ∅ = 0. (2.8)

The most fundamental observation about this capacity is that the possibility of the

union E1 ∪ E2 of two events E1, E2 ∈ Σ is the maximum of their individual possibilities

Π (E1 ∪ E2) = sup
(ω∈E1)∨(ω∈E2)

π(ω) = max

(
sup
ω∈E1

π(ω), sup
ω∈E2

π(ω)

)
= max(Π(E1),Π(E2)).

(2.9)

The general version of this property is the following.

Maxitivity. For countable collections of measurable sets Ek ∈ Σ, the possibility of their

union is given by Π
(⋃

k≥1Ek
)
= supk≥1 Π(Ek).

Among others, maxitivity entails monotonicity: For E1, E2 ∈ Σ with E1 ⊆ E2, it readily

follows that

Π(E1) ≤ max(Π(E1),Π(E2 \ E1)) = Π(E1 ∪ (E2 \ E1)) = Π(E2). (2.10)

However, the possibility measure is not generally 2-monotone, but rather 2-alternating :

For any two sets E1, E2 ∈ Σ (disjunct or not) it holds that E1∩E2 ⊆ E1 and E1∩E2 ⊆ E2,

and from the monotonicity of Π it follows that Π(E1 ∩ E2) ≤ min(Π(E1),Π(E2)) which,

in turn, yields

Π(E1 ∪ E2) + Π(E1 ∩ E2) ≤ max(Π(E1),Π(E2)) + min(Π(E1),Π(E2))

= Π(E1) + Π(E2).
(2.11)
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Moreover, the possibility measure is not self-dual. Only knowing the possibility Π(E) of

an event E ∈ Σ, does not generally allow one to infer Π(¬E). The identity

1 = Π (Ω) = Π (E ∪ ¬E) = max (Π(E),Π(¬E)) (2.12)

implies that either the possibility of E or the possibility of the counter-event ¬E has to

be one but nothing more. If Π(E) = 1, then nothing can be said about Π(¬E). It could
lie anywhere between zero and one.

Necessity Measure The necessity measure N : Σ → [0, 1] is dual to the possibility

measure in the sense that the necessity of an event E ∈ Σ is defined via the possibility of

the complement ¬E as

N(E) = 1− Π(¬E) = inf
ω/∈E

1− π(ω). (2.13)

Analogously, the possibility of E may be computed via the necessity of the complement

as Π(E) = 1−N(¬E). However, the necessity measure does not yield additional information,

it merely expresses the same (possibilistic) information differently. In fact, the properties

of the necessity measure follow from the properties of the possibility measure.

Let E ∈ Σ. The boundedness of the possibility measure entails the positivity of the

necessity measure

N(E) = 1− Π(¬E)︸ ︷︷ ︸
≤1

≥ 0, (2.14)

and the boundedness of the necessity measure follows from the positivity of the possibility

measure, i.e.

N(E) = 1− Π(¬E)︸ ︷︷ ︸
≥0

≤ 1. (2.15)

Similarly, the normality of the possibility measure yields the completeness of the necessity

measure

N(∅) = 1− Π(Ω)︸ ︷︷ ︸
=1

= 0, (2.16)

and from the completeness of a possibility measure, the normality of the necessity measure

N(Ω) = 1− Π(∅)︸︷︷︸
=0

= 1, (2.17)

is derived. Finally, by considering Π
(
¬
(⋂

k≥1Ek
))

= Π
(⋃

k≥1 ¬Ek
)
= supk≥1Π(¬Ek),

the maxitivity of the possibility measure is expressed equivalently by the following property

of the necessity measure.

Minitivity. For countable collections of events Ek ∈ Σ, the necessity of their intersection

is given by N
(⋂

k≥1Ek
)
= infk≥1 N(Ek).
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Contrary to the possibility measure, the necessity measure, is a 2-monotone capacity (and

therefore also monotone): For arbitrary E1, E2 ∈ Σ, it is easy to verify that

N(E1 ∩ E2) + N(E1 ∪ E2) ≥ min(N(E1),N(E2)) + max(N(E1),N(E2))

= N(E1) + N(E2)
(2.18)

which follows from the monotonicity of N and from E1, E2 ⊆ E1 ∪ E2.

Evidently, the necessity measure is not self-dual, but a fundamental observation is that,

since either Π(E) or Π(¬E) are one, either Π(E) must be one or N(E) must be zero.

Level Sets The elementary possibility function can also be interpreted as the contour

function of certain level sets,15 more precisely its sublevel sets

Sαπ = {ω : π (ω) ≤ α} (2.19)

for all α ∈ [0, 1], and the dual superlevel sets

Cαπ = ¬Sαπ = {ω : π (ω) > α} . (2.20)

Conversely, if only a description of the sublevel sets is available, the elementary possibility

of ω ∈ Ω can be reconstructed via a variant of the Decomposition Theorem [Hanss05]

π(ω) = inf
α∈[0,1] :ω∈Sα

π

α. (2.21)

The sub- and superlevel sets may very well be empty, as in C1
π = ∅, or span all of Ω, as

in S1
π = Ω. The superlevel set C0

π is also referred to as the support of π in contrast to

the hitherto unmentioned core which is simply the set of all elementary events with full

possibility, i.e.

core (π) = {ω ∈ Ω : π (ω) = 1} . (2.22)

Since the normality of the elementary possibility function merely guarantees a supre-

mum (but not a maximum) of one, the core may very well be empty.

Evidently, the level sets are monotonously in- and decreasing, respectively, in the sense

that from 0 ≤ α1 ≤ α2 ≤ 1 it follows that

Sα1
π ⊆ Sα2

π and Cα2
π ⊆ Cα1

π . (2.23)

A different way of expressing this is by saying that the superlevel sets are nested.

The possibilities of Sαπ and the necessities of Cαπ are bounded by

Π(Sαπ ) = sup
ω∈Sα

π

π(ω) ≤ α and N
(
C1−α
π

)
= 1− Π(S1−α

π ) ≥ α (2.24)

15The measurability of the elementary possibility function ensures that its sub- and superlevel sets are

also measurable.
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for all α ∈ [0, 1], which follows directly from their definitions [CousoMontesGil01]. Below,

these bounds shall prove to be of major importance for the imprecise probability inter-

pretation of possibility measures. Equality in Eq. (2.24) can be achieved if there exists

some ω ∈ Ω with α = π(ω). Then the possibility of the corresponding sublevel set Sαπ is

given by

Π (Sαπ ) = Π ({ζ ∈ Ω : π(ζ) ≤ π(ω)}) = π(ω) = α (2.25)

because, apart from Eq. (2.24), it holds that Π(Sαπ ) = supζ∈Sα
π
π(ζ) ≥ π(ω).

Sublevel sets are an important concept in possibility theory as they provide a unique

view of possibility measures: Consider any event E∗ ∈ Σ and its possibility α∗ = Π(E∗).
Obviously, π(ω) ≤ α∗ obtains for all ω ∈ E∗. Therefore, E∗ must be a subset of Sα∗

π

which—similar to Eq. (2.25)—has the same possibility because

Π(Sα∗
π ) = Π

((
Sα∗
π ∩ E∗) ∪ (Sα∗

π ∩ ¬E∗))
= max(Π

(
Sα∗
π ∩ E∗)︸ ︷︷ ︸

=Π(E∗)=α∗

,Π
(
Sα∗
π ∩ ¬E∗)︸ ︷︷ ︸
≤α∗

) = α∗. (2.26)

The information about E∗ provided by Π is, thus, equivalent to the information about Sα∗
π ,

i.e. the smallest sublevel set it is contained in.

Similarly, for n∗ = N(E∗), one can show that E∗ contains the superlevel set C1−n∗
π which

has the same necessity N(C1−n∗
π ) = n∗. The information about E∗ by N is equivalent to the

information about C1−n∗
π , i.e. the largest superlevel set it contains. Since either Π(E) = 1

or N(E) = 0, it follows that either Sα∗
π = Ω or C1−n∗

π = ∅.
Put differently, a possibilistic analysis can also be interpreted as the analysis of the level

sets of π. As the sublevel sets can be computed from the superlevel sets and vice versa, it

is, furthermore, sufficient to only analyze one of them—typically the superlevel sets.

To summarize this section, elementary possibility functions, possibility measures, necessity

measures, and sub- and superlevel sets are all equivalent descriptions of possibilistic

information. Depending on the application, it can make sense to alternate between these

different possibilistic structures in order to simplify the theoretical considerations, a fact

that will be exploited in later chapters. For instance, necessity measures fit into the

framework of 2-monotone capacities and coherent lower prevision, and superlevel sets fit

into the framework of random sets.

2.1.3 Inclusion

Given two capacities M(1) and M(2) on a measurable space (Ω,Σ), the capacity M(1) is said

to be included by M(2) if and only if, for every E ∈ Σ, it holds that

M(1) (E) ≤ M(2) (E) (2.27)
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which shall be denoted by M(1)  M(2).

The usefulness of the inclusion (pre-)order16  lies in the fact that it allows comparing all

sorts of capacities which need not necessarily have the same structure [BronevichKlir10],

e.g., maxitive possibility measures, minitive necessity measures and σ-additive probability

measures.

For instance, one obtains the fundamental inclusion relation N  Π between a possibility

measure Π and its dual necessity measure N by considering that for all E ∈ Σ the

inequality 1 = Π(Ω) = max(Π(E),Π(¬E)) ≤ Π(E) + Π(¬E) obtains, and therefore

N(E) = 1− Π(¬E) ≤ Π(E). (2.28)

It is furthermore evident that the inclusion order does not naturally arise in an exclusively

probabilistic framework: Suppose that for two probability measures P(1) and P(2) it holds

that P(1)(E) ≤ P(2)(E) for some event E ∈ Σ. Then

P(1) (¬E) = 1− P(1) (E) ≥ 1− P(2) (E) = P(2) (¬E) (2.29)

which implies that—except in the case of equality P(1) = P(2)—two probability measures

are generally incomparable with respect to .

In the remainder of this thesis, inclusion may also be understood with respect to the

information that is encoded in a capacity. That is, all the information encoded in M(1)

is robustly accounted for by M(2) since the output of the latter, e.g. the possibilities and

necessities, always bounds the output of the former.

Based on this order, two key concepts may be derived: Inclusion reduces to the concept of

consistency when comparing probability and possibility measures, and it reduces to the

concept of specificity when comparing two possibility measures.

2.1.3.1 Consistency

The fundamental concept of probability-possibility consistency was first introduced by

Delgado and Moral [DelgadoMoral87] and by Dubois and Prade [DuboisPrade92] in the

form discussed here, although earlier attempts at linking probability theory and possibility

theory were already made, e.g., by Zadeh [Zadeh99].

Let P be a probability on a measurable space (Ω,Σ), and let π be an elementary possibility

function thereon. If P is included by the corresponding possibility measure Π, i.e. P  Π,

then they are said to be consistent, which is also written as P  π. Naturally, if P  π, then

the corresponding necessity N is also included by P: To see this, consider any event E ∈ Σ.

Rearranging 1− P(E) = P(¬E) ≤ Π(¬E) immediately yields N(E) = 1−Π(¬E) ≤ P(E).

16The definition of a preorder requires that the relation  be reflexive and transitive. This follows

directly from the respective properties of the total order ≤ on [0, 1].
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Example 1: Consistency

Consider the possibility measure Π defined via the elementary possibilities

π (ω1) =
1

2
and π (ω2) = 1

on the universe of discourse Ω = {ω1, ω2}. The consistency Pθ  π of the probability

measures Pθ given by

Pθ ({ω1}) = θ and Pθ ({ω2}) = 1− θ

for θ ∈ [0, 1] follows by considering

N(∅) = 0 ≤ Pθ(∅) = 0 ≤ Π(∅) = 0,

N({ω1}) = 0 ≤ Pθ({ω1}) = θ ≤ Π({ω1}) = 1
2
,

N({ω2}) = 1
2

≤ Pθ({ω2}) = 1− θ ≤ Π({ω2}) = 1, and

N(Ω) = 1 ≤ Pθ(Ω) = 1 ≤ Π(Ω) = 1.

That is, Pθ  π if and only if θ ∈ [0, 1
2
].

In conclusion, the concept of consistency implies that possibility serves as an upper

probability—and necessity as a lower probability. For every consistent probability measure,

the respective probability of any event is bounded from above by its possibility and from

below by its necessity. The elementary possibility function itself provides an upper bound

on the elementary probabilities P({ω}) ≤ π(ω) for ω ∈ Ω.

Under the general inclusion formulation in Eq. (2.27), consistency is not trivial to verify,

for, in principle, it requires one to assert P(E) ≤ Π(E) for all events E ∈ Σ which is a

tedious task—especially in the case of infinite sample spaces. Recalling the arguments

in Section 2.1.2.3, viewing a possibility measure as a measure of general events is not

essential, and one generally does not have any more information about a set than, e.g.,

about the largest sublevel set it is contained in. Following this line of thought, consistency

is expressible and—more importantly—verifiable by considering only the level sets. The

following well-known lemma [DuboisEtAl04, DuboisPrade92, CousoMontesGil01] provides

such a necessary and sufficient criterion.

Lemma 1. The probability measure P and the elementary possibility function π are

consistent if and only if

P (Sαπ ) ≤ α (2.30)

or equivalently if and only if

P (Cαπ ) ≥ 1− α (2.31)

for all α ∈ [0, 1].
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Proof. For the ”⇒”-direction, suppose that P  π and let α ∈ [0, 1]. As discussed in

Eq. (2.24), it holds that Π(Sαπ ) ≤ α, and hence P (Sαπ ) ≤ Π(Sαπ ) ≤ α.

For the ”⇐”-direction, suppose that Eq. (2.30) obtains. Moreover, let E ∈ Σ and

define α∗ = Π(E). From the deliberations in Section 2.1.2.3, it follows that E ⊆ Sα∗
π .

Utilizing the monotonicity of a probability measure, one obtains the inequality P (E) ≤
P
(
Sα∗
π

)
≤ α∗ = Π(E) proving the first part of the lemma.

The equivalence of Eq. (2.30) and Eq. (2.31) follows by considering that for all α ∈ [0, 1]

it holds that P
(
Cα∗
π

)
= P

(
¬Sα∗

π

)
= 1− P

(
Sα∗
π

)
≥ 1− α.

Many of the proofs in this thesis rely on this fundamental consistency criterion—often

without explicit mention.

The expression of consistency on the basis of level sets is instructive and considerably

simplifies any possibilistic analysis. Instead of checking consistency for all possible events

individually, it suffices to check consistency for only the sublevel sets or the superlevel

sets. For instance, applying Lemma 1 to Example 1 yields only one non-trivial con-

dition, Pθ({ω1}) = θ ≤ 1
2
. This supports the claims made in Section 2.1.2.3 that a

possibilistic analysis is really only concerned with the analysis of the level sets of the

elementary possibility function. Moreover, Lemma 1 points to a well-known interpretation

of superlevel sets. In particular, the expression in Eq. (2.31) is a special case of a prediction

set [Shao03], a well-known concept from statistics. For instance, the event C0
π is predicted

to happen (P-)almost surely since P (C0
π) = 1 for all P  π, and the event C0.01

π is predicted

to occur with a probability greater than 99%. Conversely, S0.05
π is guaranteed to occur

with a probability of less than 5%, see also Section 4.3.3.

The following auxilliary lemma indicates that not all α ∈ [0, 1] need to be checked in

Lemma 1. It merely suffices to check Eq. (2.30) element-wise, i.e. for all α ∈ {π(ω) : ω ∈ Ω}.

Lemma 2. The probability measure P and the elementary possibility function π are

consistent if and only if

P ({ζ ∈ Ω : π(ζ) ≤ π(ω)}) ≤ π(ω) (2.32)

for all ω ∈ Ω.

Proof. Equivalence is shown by showing that Eq. (2.32) is equivalent to Eq. (2.30).

To show that Eq. (2.30) implies Eq. (2.32), let P be a probability measure on (Ω,Σ)

that satisfies Eq. (2.30), let ω ∈ Ω and define α = π(ω). Then, the equal-

ity P ({ζ ∈ Ω : π(ζ) ≤ π(ω)}) = P (Sαπ ) ≤ α = π(ω) holds.

The reverse is shown by contradiction: Let P be a probability measure on (Ω,Σ). Fur-

thermore, assume that Eq. (2.32) does not hold, i.e. that there exists an ω ∈ Ω such

that P ({ζ ∈ Ω : π(ζ) ≤ π(ω)}) > π(ω), and define α = π(ω). In this case, the inequal-

ity α = π(ω) < P ({ζ ∈ Ω : π(ζ) ≤ π(ω)}) = P (Sαπ ) holds, i.e. Eq. (2.30) fails, too.
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2.1.3.2 Specificity

The fundamental concept of specificity was first introduced by Dubois and

Prade [DuboisPrade86a] and arises when comparing two possibility measures by the

inclusion order.

Consider two elementary possibility functions π(1) and π(2) on the measurable space (Σ,Ω)

with the corresponding possibility measures Π(1) and Π(2). If Π(1) is included by Π(2),

then π(1) is said to be more specific than π(2), which is written as π(1)  π(2).

Example 2: Specificity

Consider the three elementary possibility functions π(1), π(2) and π(3) on the mea-

surable space (Ω,Σ), consisting of the universe of discourse Ω = {ω1, ω2, ω3} and its

powerset Σ = 2Ω. Their respective elementary possibilities are given by

ω ∈ Ω π(1)(ω) π(2)(ω) π(3)(ω)

ω1
1
3

1
2

2
3

ω2
1
4

1
5

3
4

ω3 1 1 1

By considering the corresponding possibilities

E ∈ Σ = 2Ω ∅ {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω

Π(1)(E) 0 1
3

1
4

1 1
3

1 1 1

Π(2)(E) 0 1
2

1
5

1 1
2

1 1 1

Π(3)(E) 0 2
3

3
4

1 3
4

1 1 1

it is inferred that both π(1) and π(2) are more specific than π(3). However, Π(1)

and Π(2) are incomparable with respect to , and, thus, neither π(1) nor π(2) is more

specific than the other.

Naturally, this is also equivalent to the corresponding inclusion relation of the respective

necessity measures, i.e., N(2)  N(1) follows from π(1)  π(2).

Similar to consistency, the general definition of specificity is tedious to check in most cases

but can be replaced by the following lemma giving a necessary and sufficient criterion in

terms of the elementary possibility function.17

Lemma 3. The elementary possibility function π(1) is more specific than the elementary

possibility function π(2) if and only if the former is elementwise lower than the latter, i.e.

17This concept corresponds to fuzzy set inclusion.
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if

π(1)(ω) ≤ π(2)(ω) (2.33)

for all ω ∈ Ω.

Proof. For the ”⇒”-direction, suppose that π(1) is more specific than π(2) and let ω ∈ Ω.

Then, it holds that π(1) (ω) = Π(1) ({ω}) ≤ Π(2) ({ω}) = π(2) (ω).

For the ”⇐”-direction, suppose that π(1)(ω) ≤ π(2)(ω) for all ω ∈ Ω and let E ∈ Σ. Then,

it holds that Π(1) (E) = supω∈E π
(1)(ω) ≤ supω∈E π

(2)(ω) = Π(2) (E).

This lemma, e.g., considerably simplifies the considerations in Example 2 as it suffices to

compare only the elementary possibilities, which leads to the same result.

Similarly to Lemma 1, a necessary and sufficient condition for the inclusion order in terms

of the level sets may also be given by the following lemma.

Lemma 4. The elementary possibility function π(1) is more specific than the elementary

possibility function π(2) if and only if

Sαπ(1) ⊇ Sαπ(2) , (2.34)

or, equivalently, if and only if

Cαπ(1) ⊆ Cαπ(2) (2.35)

for all α ∈ [0, 1].

Proof. For the first criterion, it suffices to show the equivalence of Eqs. (2.33) and (2.34)

as the latter is a necessary and sufficient condition for π(1) to be more specific than π(2) in

Lemma 3.

For the ”⇒”-direction, suppose that Eq. (2.33) obtains. Let α ∈ [0, 1] and let ω ∈ Sα
π(2) .

Then π(1)(ω) ≤ π(2)(ω) ≤ α, and therefore ω ∈ Sα
π(1) , i.e., Eq. (2.34) follows from Eq. (2.33).

For the ”⇐”-direction, suppose that Eq. (2.34) obtains, let ω ∈ Ω and define α∗ = π(2)(ω).

Then ω ∈ Sα∗
π(2) and therefore also ω ∈ Sα∗

π(1) , i.e. π
(1)(ω) ≤ α∗ = π(2)(ω), i.e., Eq. (2.33)

follows from Eq. (2.34) and the first part of the proposition is proven.

The second part, i.e. the equivalence to Eq. (2.35), follows by a similar argument.

2.2 Qualitative Possibility Theory

Pyt’ev suggests a qualitative view of possibility measures [Pyt’ev97], focusing only on

ranking the possibilities of individual events. According to his Principle of Relativity,

two possibility measures are equivalent if there exists a strictly increasing lower semi-

continuous rescaling function between them. Consequently, the precise numerical values of
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possibilities are irrelevant, only the relative degrees matter to make assertions [Zubyuk19]

such as ‘event E1 ∈ Σ is more possible than event E2 ∈ Σ’.

On their own, the elementary possibilities π(ω) present such a qualitative assessment of

the elementary outcomes ω ∈ Ω by ranking them with respect to their plausibility, which

is, indeed, intended to resemble the colloquial connotation of the word. It indicates how

little one should be surprised [Neumaier03] by a certain outcome ω ∈ Ω—Dubois and

Prade [DuboisPrade20] call this the ordinal preference—, and is closely connected to fuzzy

set theory as a way to represent linguistic imprecision [Zadeh95].

More precisely, the elementary possibilities establish a plausibility (pre-)order 18 among

the elements of Ω. The outcome ω1 ∈ Ω is said to be less plausible than ω2 ∈ Ω under π if

and only if π(ω1) ≤ π(ω2), which is written as ω1 �π ω2.

A plausibility-order may be elicited from agents (so-called experts), e.g., by translating

their assent or dissent to statements of the form ‘ωa is less plausible than ωb’, and can,

subsequently, be used to construct elementary possibility functions.

Example 3: Plausibility Order

Three gladiators, Antonius, Brutus, and Cassius, are to compete in a three-way

contest. Only one of them can win. Before the fight, the emperor is asked how

plausible he thinks the three outcomes ωA : ‘Antonius wins.’, ωB : ‘Brutus wins.’,

and ωC : ‘Cassius wins.’ are. His subjective ranking of their plausibility of winning

is given through the order

ωC � ωA � ωB,

i.e., he finds it most plausible that Brutus wins and least plausible that Cassius

wins, which is e.g. reflected by the elementary possibilities

π(1)(ωA) =
2

3
, π(1)(ωB) = 1 and π(1)(ωC) =

1

3

but also by

π(2)(ωA) =
1

2
, π(2)(ωB) = 1 and π(2)(ωC) =

1

2
.

In this thesis, a second elementary possibility function π′ is said to be plausibility-conform

to π if ω1 �π ω2 implies ω1 �π′ ω2 for all ω1, ω2 ∈ Ω. Notice that this property is not

necessarily symmetric,19 i.e., it does not imply that π is plausibility-conform to π′.

Finally, the N elementary possibility functions π(1), . . . , π(N) are called comono-

tone [Bronevich01] if every one of them is plausibility-conform to their element-wise

18The definition of a preorder requires that the plausibility preorder be reflexive and transitive. This

follows directly from the respective properties of the total order ≤ on [0, 1].
19In Example 3, π(2) is plausibility-conform to π(1) but not vice versa.
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minimum πmin. given by

πmin.(ω) = min
i=1,...,N

π(i)(ω). (2.36)

for all ω ∈ Ω. Comonotonicity may be interpreted as being able to find a common

plausibility order given by πmin. to which none of the agents having stated the individual

plausibility orders π(i) would be opposed.

Remark 5. Under the assumption of comonotonicity, the function πmin. must be an

elementary possibility function. Its measurability follows from being the minimum of N

measurable functions, and the normality obtains by the following consideration for N = 2.

Let α = supω∈Ω min
(
π(1)(ω), π(2)(ω)

)
be the supremum of both elementary possibility

functions, which, for the sake of the counter-argument, is assumed to be subnormal, i.e. α <

1. Then there exist ω1, ω2 ∈ Ω with π(1)(ω1) > α but π(2)(ω1) ≤ α, as well as π(1)(ω1) ≤ α

but π(2)(ω2) > α. However, if π(2)(ω1) ≤ π(1)(ω2), then πmin.(ω1) ≤ πmin.(ω2) and π(1)

is not plausibility-conform to πmin.. Conversely, if π(2)(ω1) ≤ π(1)(ω2), then π(2) is not

plausibility-conform to πmin.. In conclusion, only α = 1 is consistent with the assumption

of comonotonicity, i.e., πmin. must be normal. A similar argument can be found for the

minimum of N elementary possibility functions.

A deeper discussion of how to construct elementary possibility functions based on plau-

sibility orders stated by agents, e.g. in the case of conflicting information20 shall not

be pursued, here, as it has extensively been treated already [DuboisPrade98, Chang81,

ChameauSantamarina87].

The plausibility order implied by an elementary possibility function does, by itself, not

yield any quantifiable, only qualitative, information. It is, therefore, of limited use to

describe, e.g., uncertainty. Still, considering qualitative possibilities is not without its

merits and will be revisited in the following exposition of quantitative possibility theory,

e.g. when discussing the fundamental Principle of Plausibility.

2.3 Quantitative Possibility Theory

So far, probability measures and possibility measures have been introduced independently,

and the concept of inclusion—more precisely, that of consistency—has been suggested for

their comparison. Evidently, both capacities share similar properties, but especially the

difference between σ-additivity and maxitivity results in considerable differences.

20Suppose an agent states an inconsistent plausibility order ωa �ρ ωb, ωb �ρ ωc and ωc �ρ ωa. How

should this conflict be resolved?
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2.3.1 From Possibilities to Imprecise Probabilities

A straight-forward way of linking possibilities and probabilities is available via the concept of

imprecise probabilities (IP), i.e. when considering families of probabilities P = {P1,P2, . . .}
on the measurable space (Ω,Σ), which possibility theory offers a convenient way of

describing. This allows for a quantitative interpretation of possibility measures—as opposed

to the plausibility order-based qualitative interpretation of the elementary possibility

function described above.

2.3.1.1 Credal Sets

The concept of probability-possibility consistency is the paradigm guiding the following

development of possibility theory as a framework for reasoning with imprecise probabilities,

and great emphasis is put on viewing possibilities as upper probabilities and on regarding

possibilistic information as an expression of (un-)certainty about a probability measure.

By this line of reasoning, it is somewhat misleading to present possibility theory as an

alternative to probability theory. For all intents and purposes, it is a mere extension based

on the rejection of the assumption that one is always able to specify precise probabilities.

It is still very much based and connected to probability theory, though, and it would be

deprived of its meaning without probability.

As demonstrated in Example 1, consistency is not a one-to-one relation, and, generally,

one can find infinitely many probability measures that are consistent with the elementary

possibility function π on (Ω,Σ). The credal set

C (π) = {P ∈ P(Ω,Σ) : P  π} (2.37)

gathers all such consistent probability measures.

By definition [AntonucciCuzzolin10], credal sets must be convex. This is verified by

considering two consistent probability measures P(1),P(2)  π and a scalar s ∈ [0, 1]. The

linearly combined probability measure P(·) = sP(1)(·) + (1 − s)P(2)(·) is also consistent

with π because for all α ∈ [0, 1]

P(Sαπ ) = sP(1)(Sαπ ) + (1− s)P(2)(Sαπ ) ≤ sα + (1− s)α = α. (2.38)

Finally, the concept of specificity, allows for a basic comparison of credal sets. By the

transitivity of the inclusion preorder, it follows that C(π(1)) ⊆ C(π(2)) if π(1)  π(2). Then,

it makes sense to write, e.g., P  π(1)  π(2) in order to show that P is consistent with π(2)

because P ∈ C(π(1)) ⊆ C(π(2)). In conclusion, specificity may be employed to measure

the expressiveness of a possibility measure, or the ‘size’ of its corresponding credal set.

This can also be used as a basis for measures of the information content of a possibility

measure, for which many metrics have been proposed [KlirWierman99].
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A detailed investigation of the credal sets of possibility measures is provided by Baudrit et

al. [BaudritDubois06].

2.3.1.2 Possibilities as Upper Probabilities

Due to the very specific geometry of the credal sets of possibility measures, possibility

theory provides a rather coarse framework for reasoning with imprecise probabilities.

Possibilities are not able to exactly represent arbitrary families of probability measures but

only those following a very specific structure as explained above. Most famously, a single

probability measure can usually not precisely be represented—except for the trivial class

of ‘deterministic’ measures to be discussed in Section 3.1.3. This coarseness is perhaps

the biggest drawback of possibility theory. Possibilities simply provide upper (and lower)

bounds of probabilities, making it a framework of ill-known or imprecise probabilities.

Two important properties of possibilistic descriptions of imprecise probabilities are listed

below.

Avoiding Sure Loss The credal set of a possibility measure is never empty and one

can always find at least one probability measure that is consistent with π. For instance,

for every ωc in the core of π, it is easy to verify that the probability measure Pωc given by

Pωc (E) =

{
1 if ωc ∈ E

0 otherwise
(2.39)

for all E ∈ Σ is always contained in C(π). In Example 1, this corresponds to ωc = ω2

and θ = 0. Of course, the existence of such a ωc is not always guaranteed because the core

could be empty.

If no such core element exists, it is—due to the normality of the elementary possibility

function—always possible to find a sequence (ωi)
∞
i=1 in Ω such that π(ωi) → 1 for i→ ∞.

The probability mass function p∈ with

p∈(ω∈
i ) = Π({ω∈

1 , . . . , ω
∈
i })− Π({ω∈

1 , . . . , ω
∈
i−1}) (2.40)

for i = 1, 2, . . . and p∈(ω) = 0 for all other ω ∈ Ω induces a probability measure P∈ that

certainly belongs to C(π). This may be shown as follows. Let α ∈ [0, 1]. The probability

on the corresponding sublevel set depends on the probability masses of the ω∈
i ∈ Sαπ .

Additionally, one may disregard the elements with probability mass zero, i.e., one may

express the probability on Sαπ as

P∈ (Sαπ ) =
∑

ω∈Ω :ω∈Sα
π

p({ω∈
i }) =

∑
i :ω∈

i ∈Sα
π

p({ω∈
i }) =

∑
i :ω∈

i ∈Sα
π ∧ p(ω∈

i )>0

p({ω∈
i }). (2.41)
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However, 0 < p(ω∈
i ) = Π({ω∈

1 , . . . , ω
∈
i })− Π({ω∈

1 , . . . , ω
∈
i−1}) implies that

Π({ω∈
1 , . . . , ω

∈
i−1}) < Π({ω∈

1 , . . . , ω
∈
i }) = max

(
Π({ω∈

1 , . . . , ω
∈
i−1}), π(ω∈

i )
)

= π(ω∈
i ) ≤ α,

(2.42)

i.e. ω∈
1 , . . . , ω

∈
i ∈ Sαπ . Then, the probability on Sαπ can be upper bounded via the supremum

of the (telescoping) sums over all these elements

P∈ (Sαπ ) ≤ sup
i :ω∈

i ∈Sα
π ∧ p(ω∈

i )>0

i∑
j=1

p({ω∈
j })

= sup
i :ω∈

i ∈Sα
π ∧ p(ω∈

i )>0

Π({ω∈
1 , . . . , ω

∈
i })− Π(∅)

= sup
i :ω∈

i ∈Sα
π ∧ p(ω∈

i )>0

π(ω∈
i )− 0 ≤ α.

(2.43)

Conversely, sub-normality implies Π(Ω) < 1 and there cannot be any P  π because, by

definition, P(Ω) = 1 for all P ∈ P(Ω,Σ).

Alternatively, every probability measure P∈ constructed via

P∈(E) =
∫ 1

0

P0(Cβπ ∩ E)
P0(Cβπ )

dβ, (2.44)

for all E ∈ Σ is consistent with π. Therein, P0 ∈ P(Ω,Σ) can be an arbitrary probability

measure21 on (Ω,Σ) that fulfills the (easily achievable) regularity assumption of non-zero

probability on (μ-)almost all α-cuts. Under this definition, one can verify that P∈ is a

consistent probability measure22 by checking that

P∈(Cαπ ) =
∫ 1

0

P0(Cαπ ∩ Cβπ )
P0(Cβ) dβ =

∫ α

0

P0(Cαπ )
P0(Cβπ )

dβ︸ ︷︷ ︸
≥0

+

∫ 1

α

P0(Cβπ )
P0(Cβπ )

dβ︸ ︷︷ ︸
=1−α

≥ 1− α (2.45)

obtains for all α ∈ [0, 1].

In imprecise probabilistic terms, the non-emptiness of the credal set corresponds to avoid-

ing sure loss [Walley91], and if P0 = λ is a (normalized) Lebesgue measure, then this

construction corresponds to the Pignistic Transform [Smets05], also called the Shapley

value [Shapley53]. Finally, Eq. (2.44) describes a very general technique for Possibility-to-

Probability Transformations. The converse (Imprecise-)Probability-to-Possibility Transfor-

mation shall be discussed in Section 2.3.2.2.

Coherence Fundamentally, every possibility measure is also a coherent upper probabil-

ity [De CoomanAeyels99]. That is, for all events E ∈ Σ it provides a tight upper bound

21In fact, it suffices if P0 is a bounded, σ-additive measure that need not necessarily be normal.
22It follows from the positivity, normality and σ-additivity of P0 (and from the linearity of the integral)

that P∈ also possesses these properties and, too, is a probability measure.



32 Chapter 2: Possibilities and Imprecise Probabilities

on the probability P(E) via

Π(E) = sup
P�π

P(E). (2.46)

From the consistency criterion, it is clear that P(E) ≤ Π(E) if P  π but it is not trivial

to see that, for all E ∈ Σ, a consistent probability measure P∗  π can be found such

that P∗(E) = Π(E).

Again, the arguments by Fetz and Oberguggenberger [FetzOberguggenberger04] are

adapted. If Π(E) = 1, then, one can simply construct a sequence of elementary events

in E with an appropriate probability mass function—similar to Eq. (2.40). Therefore, only

the case Π(E) < 1 is left to be considered. Then, one may find a sequence of elementary

events (ω∈
i )i≥1 in E such that π(ω∈

i ) → Π(E) for i → ∞, and a second sequence of ele-

mentary events (ω /∈j )j≥1 in ¬E such that π(ω /∈j ) → Π(¬E) = 1 for j → ∞. The probability

mass function p∗ with

p∗(ω∈
i ) = Π({ω∈

1 , . . . , ω
∈
i })− Π({ω∈

1 , . . . , ω
∈
i−1}) and

p∗(ω /∈j ) = Π(E ∪ {ω /∈1 , . . . , ω /∈j })− Π(E ∪ {ω /∈1 , . . . , ω /∈j−1})
(2.47)

for i, j = 1, 2, . . . and zero otherwise defines a consistent probability measure P∗ achiev-

ing P∗(E) = Π(E). The consistency is shown similar to Eq. (2.43), and the equivalence

follows from the telescoping sum

P∗(E) =
∞∑
i=1

p∗(ω∈
i ) = Π({ω∈

1 , ω
∈
2 , . . .})− Π(∅) = Π(E). (2.48)

Alternatively, the fact that possibility measures are 2-alternating as pointed out in Eq. (2.11)

suffices to show that they are special cases of coherent upper probabilities that avoid sure

loss [BronevichRozenberg20]. Of course, the 2-monotone necessity is also a coherent lower

probability, which avoids sure loss, i.e.

N(E) = inf
P�π

P(E). (2.49)

Formally, coherence also corresponds to credal sets being closed with respect to the

metric d(Ω,Σ) given by d(Ω,Σ)(P
(1),P(2)) = supE∈Σ |P(1)(E)−P(2)(E)| for P(1),P(2) ∈ P(Ω,Σ).

Relation to Other Theories of Imprecise Probabilities A possibilistic description

of an experiment is coarser than any precise probabilistic description. But, it is equally

valid and arguably sometimes more appropriate. Moreover, this coarseness is compensated

for by very efficient numerical implementations, which are only rivaled by interval analysis

which provides even coarser approximations.23 Concerning the connection of possibility

theory to other prominent theories of imprecise probabilities, the following remarks can be

made.
23In fact, many implementations from interval analysis can be extended to possibilistic analysis, see

Chapter 5.
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� The analysis of quasi-vacuous possibility measures, which are exclusively {0, 1}-
valued, coincides with interval analysis [JaulinEtAl01].

� In order to arrive at the upper and lower probabilities induced by random sets as

proposed by Dempster [Dempster67], consider the multivalued mapping α �→ Cαπ for

the random variable α with standard uniform probability distribution.24

� The necessity measure is an example of Shafer’s consonant belief functions, and

conversely the possibility measure is a consonant plausibility function [Shafer76,

DuboisPrade90].

� In the subjective framework of lower previsions [Walley91], the necessity N(E) of

some event E ∈ Σ is highest acceptable buying price for bet that pays 1 Euro if E

occurs, and conversely the possibility Π(E) is the lowest acceptable selling price if

one had to offer this payout to someone else.

Of course, there exist many more links to other theories [DesterckeDuboisChojnacki08,

AugustinEtAl14, Dubois82, Walley91].

2.3.2 From Imprecise Probabilities to Possibilities

Having demonstrated how credal sets naturally arise from the inclusion order, it remains to

be addressed how an elementary possibility function can be chosen such that it describes

a given set of probability measures, i.e. imprecise probabilities. This is essential because

possibilistic models or descriptions do not arise naturally; instead, they must be inferred.

For instance, one might say that ‘the probability that this die shows a one is somewhere

between 16% and 17%’, or that ‘the probability of rain in Stuttgart tomorrow is less

than 5%’, but these expressions hardly ever conform to a unequivocal possibilistic structure.

It is, unfortunately, not possible to express arbitrary sets of probability measures as the

credal set of a single elementary possibility function. As an example, consider a ‘fair’ coin.

Precisely expressing the corresponding probability measure with equal probabilities for

every side cannot be achieved by a possibility measure as it would require, e.g., the upper

elementary probabilities of both ‘heads’ and ‘tails’, i.e. the elementary possibilities, to be

exactly 1
2
. But this would violate the normality requirement of the elementary possibility

function. For this reason, one might ask whether this renders possibility theory useless.

The remainder of this thesis is intended to convince skeptics of the opposite, but it must

be conceded that possibility theory does not replace classical probability theory. If a

precise, and well-warranted, stochastic description of an experiment is available, it is not

recommended to perform a possibilistic analysis thereof as this would certainly yield too

conservative results. If, however, there is good reason for doubting the precision of the

24See Section 3.1.1.



34 Chapter 2: Possibilities and Imprecise Probabilities

actual probabilistic description, it is worth considering possibilistic methods. These are

meant to be employed in an imprecise probabilistic setting, i.e. if and only if one cannot

conclusively rule out all probability measures but one.

From the specificity relation it is, furthermore, clear that some possibilistic structures

possess larger and some possess smaller credal sets, and the fundamental question is how

to ‘best’ express probabilistic imprecision in a possibilistic structure.

2.3.2.1 Fundamental Principles

In the following, three principles based on inclusion, i.e. consistency and specificity, and

on plausibility conformity are proposed that, in the author’s view, are simple, intuitive

and straight-forward to apply.

The Principle of Representation The Principle of Representation can be summarized

as ‘what is probable must be [possible]’.25 As discussed earlier, it is much more than

a principle, it is what gives a quantitative meaning to the methods developed in this

thesis, and, therefore, it possesses a special significance. A possibilistic structure must

act as a placeholder for all consistent probability measures, and when reasoning with the

former, the principal interest must be the analysis of the latter. Any result obtained by

the possibilistic analysis must, therefore, serve as a summary of results obtained by the

corresponding possibilistic analysis performed on the elements of the credal set. Only if

this principle is obeyed in every step of the analysis, the upper probability interpretation

of possibility is preserved, and only then possibilistic assertions are meaningful in the IP

sense postulated in this thesis.

To build some intuition into the necessity of the further principles, consider the vacuous

possibility measure given by the vacuous elementary possibilities πvac.(ω) = 1 for all ω ∈ Ω

on a measurable space (Ω,Σ). This possibility measure is consistent with all probability

measures P ∈ P(Ω,Σ), and certainly adheres to the Principle of Representation under all

given circumstances; but it is little expressive, as it bounds every event E ∈ Σ with the

trivial lower probability Nvac.(E) = 0 and the trivial upper probability Πvac.(E) = 1 with

the exception of the case E = ∅ where Πvac.(∅) = 0 and the case E = Ω where Nvac.(Ω) = 1.

Furthermore, no ranking in terms of the plausibility order is provided. Every elementary

event ω ∈ Ω is seen as equally plausible. The vacuous possibility measure does not

provide any non-trivial insight into the experiment and does not account for additional

information. It is most definitely never wrong to presuppose this model,26 especially in

25A variant of ‘what is probable must be plausible’ [DuboisPrade88, p. 121] which itself is borrowed

from the Laplace Principle of Insufficient Reason ‘what is equipossible must be equiprobable’.
26In a logical sense, it is a tautology.
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the case of complete ignorance27 with respect to the true probabilities, yet it clearly lacks

expressiveness.

The Principle of Expressiveness The Principle of Expressiveness, which is akin to

the Principle of Minimum/Maximum Specificity postulated and advocated by Dubois

et al. [Mauris09, DuboisPrade86a], states that ‘what is [less] probable must be [less

possible]’.28 A possibility measure should be specified as specific as possible, i.e., given

some constraints it has to satisfy, a most specific possibility measure should be selected

among the possible choices. Among other things, this implies that the vacuous probability

measure ought to be the last resort when modeling imprecise probabilities and that the

elementary possibilities should be pointwise as low as possible, subject to the constraints

imposed by the Principle of Representation.

For instance, given two possibility measures intended to describe the same information

where one is more specific than the other, it follows from the inclusion property of credal

sets that the credal set of the former is contained in the credal set of the latter. It includes

fewer probability measures and can therefore provide tighter bounds on the probabilities,

making it the preferred choice. Still, given that the overall paradigm is a robust analysis

of the imprecise probabilities, especially near-robust approximations, even if they would

drastically improve expressiveness, seem questionable.

Unfortunately, it is not generally possible to specify the unique most expressive and

representative possibility measure as not all possibility measures are comparable with

respect to . Reconsider, e.g., a possibilistic model of a ‘fair’ coin. The Principle of

Representation postulates that both elementary possibilities ought to be at least as

high as 50%, whereas the Principle of Expressiveness postulates that at least one of the

elementary possibilities ought to be no higher than 50%; due to the normality criterion

the other elementary possibility must be one. But, from these two principles alone, no

specifications as to which elementary possibility ought to be chosen as 1
2
and which one

to be chosen as one can be inferred. Both choices are incomparable with respect to the

specificity order. To resolve the issue of deciding between otherwise equivalent models, a

plausibility order must also be provided.

The Principle of Plausibility The Principle of Plausibility states that ‘what is [possi-

ble] must be plausible’.29 The degrees of possibility, especially the elementary possibilities,

ought to convey the general plausibility, and the plausibility order should represent a

comprehensible assessment of the experiment. Ideally, the plausibility order of an objective

27Further discussion of the vacuous possibility measure as a representation of total ignorance will be

provided in Section 3.1.2.
28See footnote 25.
29See footnote 25.
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possibility measure ought to be based on some objective criterion, such as the likelihood; it

is, however, permissible to base it on subjective criteria, such as an agents opinion, as this

will not, generally, render the imprecise probability interpretation invalid. The Principle

of Plausibility merely suggests how the elementary possibilities should be ordered.

In summary, a suitable possibility measure has to robustly, but tightly, account for all the

information about the imprecisely known probabilities and should reflect a plausibility

order. Quantitative possibility theory is the framework for imprecise probabilities based on

such possibility measures [DuboisPrade98] and constitutes the core concept in this thesis.

It adheres to all three fundamental principles of possibility theory.

These fundamental principles can be justified further: The theory of belief functions,

which is one historic origin of possibility theory, emerged as a theory of statistical infer-

ence [Shafer76], not as a theory of imprecise probabilities. Only later, it was discovered

that plausibility measures, and therefore possibility measures as well, could be interpreted

as upper probabilities [WangKlir13, DuboisPrade92]. Consequently, possibility theory

can also be derived, independently of the approach presented in this thesis, as a theory

of statistical inference [LiuMartin20]. Incidentally, Martin and Liu [MartinLiu15] also

present two fundamental principles, the Principles of Validity and Efficiency, describing

what ‘good’ statistical inference ought to accomplish. These principles are completely

analog to the Principles of Representation and Expressiveness, which describe what ‘good’

reasoning with imprecise probabilities ought to accomplish. As explained, the Principle

of Plausibility is not a ‘hard’ constraint but merely a pointer toward sensible plausibility

orderings and is, in essence, a generalization of the Likelihood Principle, which is crucial

in statistical inference. The strong connection between Martin and Liu’s inferential models

and possibilistic imprecise probability models will further be investigated in the remainder

of this thesis; nevertheless, the fact that this set of principles can be motivated in at least

two superficially unrelated ways makes a compelling argument for their adequacy.

In order to avoid ambiguity, a clear distinction between qualitative and quantitative

possibility measures must be made. Therefore, the elementary possibility function of

a qualitative possibility measure will henceforth be called an elementary plausibility

function denoted by ρ instead of π which is reserved for elementary possibility functions

of quantitative possibility measures with an interpretation as an upper probability. The

definition of an elementary plausibility function would, in theory, not require normality—

in fact, one could even replace its image [0, 1] by any metric space. But imposing the

same definition guarantees that elementary possibilities can always also be interpreted as

elementary plausibilities, and vice versa. Whenever a sub-normal elementary plausibility

function ρ is provided in this thesis, this is done in order to avoid unnecessary technicalities

such as defining the corresponding normalized elementary plausibility function ρ̄ given by

ρ̄(ω) =
ρ(ω)

supζ∈Ω ρ(ζ)
(2.50)
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for all ω ∈ Ω; the results are usually independent of the assumed normality. Nevertheless,

supernormal—or even unbounded—plausibility functions are not considered.

Equipped with these principles, the question at the beginning of this section, regarding the

problem of how to encode knowledge in the form of imprecise probabilities by possibilities,

can now be answered satisfactorily.

2.3.2.2 The Imprecise-Probability-to-Possibility Transform

Consider an arbitrary set of probability measures P ⊆ P(Ω,Σ) defined on the measurable

space (Ω,Σ) which, in this thesis, shall serve as the most general description of imprecise

probabilities.30 This set may be expressed in very different ways. For instance, it could be

an arbitrary collection of individual probability measures P = {P1,P2, ...}, or it could be

defined by an incomplete characterization, stating, e.g., that ’the probability of event E ∈ Σ

is twice the probability of event E2 ∈ Σ’, i.e. P = {P ∈ P(Ω,Σ) : P(E) = 2P(E2)}.
It may even stem from a different description of imprecise probabilities, e.g., lower

previsions [Walley91] or p-boxes [FersonEtAl15], or be vacuous, i.e., P = P(Ω,Σ).

Now, the goal is to find an elementary possibility function describing this setP. IfP = C(π),

then π is said to be an exact possibilistic description of P. Otherwise, if P ⊆ C(π), it is

an outer possibilistic description/approximation; if C(π) ⊆ P, it is an inner possibilistic

description/approximation.

To this end, let a qualitative ranking of the elementary events ω ∈ Ω be given through

an elementary plausibility function ρ : Ω → [0, 1]. Below, a variety of suitable elementary

plausibility functions for various imprecise probability descriptions will be discussed in

detail.

The Principles of Representation, Expressiveness and Plausibility lead to a vaguely for-

mulated mathematical problem for a possibilistic description of (P, ρ). The goal is to

find the most expressive possibility measure Π which includes all P ∈ P, excludes as

many P /∈ P as possible, and where equiplausible elementary events under �ρ also have

the same possibility. In other words, the Principle of Representation and the Principle of

Plausibility provide some inevitable constraints on the shape of π while the Principle of

Expressiveness provides some optimality conditions.

Figuratively speaking, these principles correspond to the bounding problem illustrated in

Figure 2.1 where the star-shaped family of probability measures P is to be described by a

possibility measure. Due to the very specific structure of these measures, their credal sets

can only have certain geometries. For the purpose of illustration, say, e.g., that they can

only be squares. The question is which square one ought to choose in order to robustly

30More general descriptions can, e.g., be achieved via the specification of desirable gambles in the theory

of lower previsions [TroffaesMirandaDestercke13].
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describe P. The Principle of Representation excludes the blue square for its inability to

cover all of the star which would imply that some of the probability measures in P are

not actually contained in the credal set. The Principle of Expressiveness requires minimal

size which would exclude the pink square for its unnecessary inclusion of far too many

probability measures that do not not pertain to P. The green square would always be

preferable to the pink one because the centers and orientations are equal, but the green

credal set has a smaller volume without violating the Principle of Representation. Lastly,

the Principle of Plausibility can be interpreted as a prescribed orientation of the square,

enabling the decision whether to choose the orange or the green credal set which are

otherwise equivalent, e.g., with respect to their size and center.

Figure 2.1: Illustration of the Imprecise-Probability-to-Possibility Transform.

The Imprecise-Probability-to-Possibility Transform (IP-Π-transform) [HoseHanss20,

HoseHanss21c] states this mathematical program more precisely by defining the elemen-

tary function π = T[P, ρ] whose values are given by

π(ω) = sup
P∈P

P ({ζ ∈ Ω : ρ (ζ) ≤ ρ (ω)}) (2.51)

for all ω ∈ Ω. If P = {P} is composed of one probability measure only, the IP-Π-transform

is also referred to as the Probability-to-Possibility Transform (P-Π-transform) of P.

Before understanding the properties of the IP-Π-transform, some technical remarks are

given.

Remark 6. Since ρ is measurable, the sublevel sets of ρ are also measurable,

i.e., {ζ ∈ Ω : ρ (ζ) ≤ ρ (ω)} ∈ Σ, and the IP-Π-transform is well-defined.

Remark 7. The expression in Eq. (2.51) does not require ρ to be normal. In fact,

every monotone rescaling of the elementary plausibility function would yield the same

transformation. Thus, sub- or supernormal elementary plausibility functions are also

admissible in the IP-Π-transform.

Remark 8. The probability P ({ζ ∈ Ω : ρ (ζ) ≤ ρ (ω)}) is monotonously increasing with

respect to the value of ρ(ω) for all P ∈ P(Ω,Σ) due to the monotonicity of the probability

measure. This is referred to as property (∗) in the proofs of Propositions 9, 11, 12, and 13.
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First and foremost, it needs to be verified that the IP-Π-transform actually defines an

elementary possibility function, i.e. that it is normal.

Proposition 9. The IP-Π-transform defines an elementary possibility function.

Proof. Trivially, π(ω) ∈ [0, 1] for all ω ∈ Ω because the probability measure is com-

plete and bounded. In particular, this implies that supω∈Ω π(ω) ≤ 1. To prove

the normality of π, let P∗ ∈ P. Due to the monotonicity property (∗), one can

write supω∈Ω P({ζ ∈ Ω : ρ(ζ) ≤ ρ(ω)}) = P({ζ ∈ Ω : ρ(ζ) ≤ supω∈Ω ρ(ω)}) which is

equivalent to P(Ω) = 1. Since supω∈Ω π(ω) ≥ supω∈Ω P∗({ζ ∈ Ω : ρ(ζ) ≤ ρ(ω)}) = 1, it is

also clear that supω∈Ω π(ω) = 1.

Remark 10. In the proof of Proposition 9, the measurability of π is not mentioned, and

without regularizing assumptions on the geometry of P, guarantees are hard to provide.

Depending on the scenario, this must be addressed individually; however, for well-behaved,

e.g. convex, P, this does not pose a serious issue.

The following propositions correspond to the different fundamental principles formulated

above. Most importantly, it can be shown that the IP-Π-transform conforms to the

Principle of Representation.

Proposition 11. The elementary possibility function π defined by the IP-Π-transform is

consistent with all P ∈ P.

Proof. Let P′ ∈ P and α∗ ∈ [0, 1]. Defining the maximum plausibility ρ∗ = supω∈Sα∗
π
ρ(ω)

and the corresponding sublevel set E∗ = {ζ ∈ Ω : ρ(ζ) ≤ ρ∗} yields Sα∗
π ⊆ E∗. From the

monotonicity of the probability measure it follows that P′ (Sα∗
π

)
≤ P′ (E∗), and from

property (∗) in Remark 8 it follows that P′ (E∗) = supω∈Sα∗
π
P′ ({ζ ∈ Ω : ρ (ζ) ≤ ρ (ω)}).

Considering that P′ ({ζ ∈ Ω : ρ (ζ) ≤ ρ (ω)}) ≤ supP∈P P ({ζ ∈ Ω : ρ (ζ) ≤ ρ (ω)}), it is

evident that P′(Sα∗
π ) ≤ supω∈Sα∗

π
supP∈P P ({ζ ∈ Ω : ρ (ζ) ≤ ρ (ω)}). By the definition in

Eq. (2.51), π(ω) = supP∈P P ({ζ ∈ Ω : ρ (ζ) ≤ ρ (ω)}). Observing that supω∈Sα∗
π
π(ω) ≤ α∗,

finally, yields the consistency criterion P′(Sα∗
π ) ≤ α∗ and it is proven that P′  Π.

Furthermore, it can be shown that the Principle of Plausibility is adhered to by the

IP-Π-transform.

Proposition 12. The elementary possibility function π defined by the IP-Π-transform is

plausibility-conform to the elementary plausibility function ρ.

Proof. Let ω1, ω2 ∈ Ω with ρ(ω1) ≤ ρ(ω2). Then, immediately, it follows by the mono-

tonicity property (∗) that

sup
P∈P

P({ζ ∈ Ω : ρ(ζ) ≤ ρ(ω1)}) ≤ sup
P∈P

P({ζ ∈ Ω : ρ(ζ) ≤ ρ(ω2)})

i.e., π(ω1) ≤ π(ω2).
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A converse proposition may not be given. It is always possible that π(ω1) = π(ω2) even

though ρ(ω1) < ρ(ω2) for some combination ω1, ω2 ∈ Ω, and, therefore, that ρ is not

plausibility-conform to π.

Lastly, also the Principle of Expressiveness is integrated into the IP-Π-transform.

Proposition 13. Among all possibility densities which include all P ∈ P and are

plausibility-conform to ρ, the elementary possibility function π defined by the IP-Π-trans-

form is maximally specific.

Proof. Let π′ be an elementary possibility function that is plausibility-conform to ρ and

consistent with all P ∈ P, let ω ∈ Ω, and let α = π′(ω). Consistency implies P(Sαπ′) ≤ α

for all P ∈ P, and therefore supP∈P P(Sαπ′) ≤ α. The plausibility-equivalence implies

that for all ζ ∈ Ω with ρ(ζ) ≤ ρ(ω) it follows that π′(ζ) ≤ π′(ω) = α, and there-

fore, {ζ ∈ Ω : ρ (ζ) ≤ ρ(ω)} ⊆ {ζ ∈ Ω : π′ (ζ) ≤ α} = Sαπ′ . Finally, by considering the

definition in Eq. (2.51), it follows that

π(ω) = sup
P∈P

P ({ζ ∈ Ω : ρ (ζ) ≤ ρ(ω)}) ≤ sup
P∈P

P (Sαπ′) ≤ α∗ = π′(ω)

i.e., π is at least as specific as π′.

The IP-Π-transform is fundamental to the remainder of this thesis. Its nature justifies

calling possibility theory an Integrate-First approach because the (imprecise) probability

measures P are integrated on the sublevel sets of ρ before any further reasoning is

performed, and these sublevel sets are the basis for the sublevel sets of π, which is ensured

by the Principle of Plausibility. Put differently, the IP-Π-transform can also be understood

as a monotone rescaling ρ �→ π of the elementary plausibilities according to the imprecise

probability mass contained in the corresponding sublevel sets of ρ. This observation would,

in most cases, be enough to show the measurability of π.

The Optimal Imprecise-Probability-to-Possibility Transform The choice of P

is usually not debatable, as it must clearly describe the available (and only this!) infor-

mation about the true probability distribution. The non-unique choice of the elementary

plausibilities, however, indicates that there is not necessarily one ‘best’ way to perform a

possibilistic analysis. In essence, it introduces infinitely many degrees of freedom to be

fixed by the analyst. However, some choices seem more prudent than others, and suitable

choices constitute a large portion of this thesis. A good default choice is the (potentially

subnormal) optimal elementary plausibility function given by

ρopt.P (ω) = sup
P∈P

P({ω}) (2.52)

for ω ∈ Ω. The corresponding Optimal IP-Π-transform O[P] = T[P, ρopt.P ] yields the

optimal possibilistic description of P. The term ‘optimal’ is owed to the close connection of
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this transform to the Optimal P-Π-transform introduced by Dubois et al. [DuboisEtAl04],

see Section 3.1.4.1.

The IP-Π-transform provides a constructive way of modeling and reasoning with imprecise

probabilities. The generality of this result as well as its universal applicability shall be

demonstrated in the following example and throughout the remainder of this thesis.

Example 4: IP-Π-transform

An urn contains 10 balls in total, out of which 6 are certainly red and 3 are

certainly blue. The other ball is either blue or green. This information may be

gathered in an imprecisely known (multinomial) probability measure Pθ on the

sample space Ω = {ωgreen, ωblue, ωred} with the elementary probabilities

Pθ({ωgreen}) = θ, Pθ({ωblue}) = 0.4− θ and Pθ({ωred}) = 0.6

for θ ∈ {0, 0.1}. The corresponding family of multinomial probability measures is

given by the (disconnected) set P = {Pθ : θ ∈ {0, 0.1}}, and the optimal elementary

plausibilities are given by

ρopt.P (ωgreen) = 0.1, ρopt.P (ωblue) = 0.4 and ρopt.P (ωred) = 0.6.

Applying the Optimal IP-Π-transform yields π = O[P] with the elementary possi-

bilities

π(ωgreen) = 0.1, π(ωblue) = 0.4 and π(ωred) = 1.

Evidently, π is plausibility-conform to ρ and consistent with all P ∈ P. Yet, it also

admits probability measures which are not contained in P, such as

P/∈({ωgreen}) = 0.1, P/∈({ωblue}) = 0.2 and P/∈({ωred}) = 0.7.

A different choice of the elementary plausibilities, e.g.

ρ′(ωgreen) = 0.5, ρ′(ωblue) = 1 and ρ′(ωred) = 0,

also yields different elementary possibilities, in this case

π′(ωgreen) = 0.7, π′(ωblue) = 1 and π′(ωred) = 0.6,

which does not include P/∈ but other probability measures that are not in P. Finally,

consider the following illustration.
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The triangular set of all probability measures P(Ω, 2Ω) is represented in blue and

the (two-element) family of probability measures P in orange. It constitutes a

part of the edge and the vertices of both the optimal credal set C(π) in red and

the alternative credal set C(π′) in green. These active constraints are, generally,

an indicator of maximum specificity. The probability measure P/∈ is depicted in

purple. From the ‘size’ of the credal sets, it certainly seems advisable to prefer the

Optimal IP-Π-transform over the IP-Π-transform under ρ′—not least because it

better conforms with the Principle of Plausibility.

Contrary to the example above, it is not uncommon that an analytical evaluation of

the (Optimal) IP-Π-transform is not possible. Then, robust outer, i.e. less specific,

approximations must be provided in order not to violate the Principle of Representation,

and expressiveness must be sacrificed for the sake of robustness. If this is the case,

additional discussion regarding the actual loss of expressiveness shall be provided.

Finally, it remains to be established when a possibilistic description of P via an elementary

possibility function π is exact, i.e. when P = C(π).

Invariance and Exact Possibilistic Descriptions A preliminary property of the

Optimal IP-Π-transform is given by the following proposition stating that, if the family

of probability distributions specifies a credal set already, the corresponding elementary

possibility function can be recovered by the Optimal IP-Π-transform without any loss of

expressiveness.

Proposition 14. An elementary possibility function and its associated credal set are

invariant under the Optimal IP-Π-transform.
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Proof. Let π be an elementary possibility function on the measurable space (Ω,Σ) and

let C(π) be its associated credal set. By Eq. (2.52), the corresponding optimal elementary

plausibilities of ω ∈ Ω are given by ρopt.C(π)(ω) = π(ω). Finally, the equality proving

invariance π(ω) = Π({ζ ∈ Ω : ρopt.C(π)(ζ) ≤ ρopt.C(π)(ω)}) = supP∈C(π) P({ζ ∈ Ω : π(ζ) ≤ π(ω)})
follows from the coherence of the possibility measure and from Eq. (2.25).

This indicates that there is no loss of information, i.e., there is no inclusion P ∈ C(O[P])

of undesired probability measures P /∈ P, under the Optimal IP-Π-transform if P = C(π)

possesses the shape of a possibilistic credal set already. Put differently, C(π) = C(O[C(π)]).

If anything, this provides a good argument for the name of the Optimal IP-Π-transform.

It is also possible to turn this result into a straightforward way of characterizing exact

possibilistic descriptions.

Lemma 15. The optimal plausibility function ρopt.P is an exact possibilistic description

of P, i.e., C(ρopt.P ) = P, if and only if

sup
P∈P

P
(
{ζ ∈ Ω : ρopt.P (ζ) ≤ ρopt.P (ω)}

)
= ρopt.P (ω) (2.53)

for all ω ∈ Ω.

Proof. The proof of the ”⇒”-direction is similar to the proof of Proposition 14: Let π be an

elementary possibility function on the measurable space (Ω,Σ). Then, the corresponding

optimal elementary plausibilities of its credal set C(π) are given by ρopt.P (ω) = π(ω) for

all ω ∈ Ω and, from the coherence of the possibility measure and from Eq. (2.25), it follows

that

sup
P∈P

P({ζ ∈ Ω : ρopt.P (ζ) ≤ ρopt.P (ω)}) = sup
P�π

P({ζ ∈ Ω : π(ζ) ≤ π(ω)}) = π(ω) = ρopt.P (ω).

To prove the ”⇐”-direction, let P be a family of probabilities with the optimal elementary

plausibility function ρopt.P such that supP∈P P({ζ ∈ Ω : ρopt.P (ζ) ≤ ρopt.P (ω)}) = ρopt.P (ω) for

all ω ∈ Ω. The evaluation of the corresponding Optimal IP-Π-transform (2.51) reads π(ω) =

supP∈P P({ζ ∈ Ω : ρopt.P (ζ) ≤ ρopt.P (ω)}) = ρopt.P (ω) guaranteeing that P ⊆ C(ρopt.P ) = C(π).

Conversely, every P ∈ C(ρopt.P ) is certainly contained in P because supP�π P({ζ ∈ Ω :

ρopt.P (ζ) ≤ ρopt.P (ω)}) = ρopt.P (ω) by Eq. (2.25) and the coherence of the possibility measure,

and it can be concluded that P = C(ρopt.P ).

This lemma is a good example where elementary plausibilities act as elementary possibilities

and vice versa. That is, the exact possibilistic description is given by π = ρopt.P .

The difference to earlier results about the IP-Π-transform is that the exact possibilistic

description guarantees a loss-free Optimal IP-Π-transform of P. In the remainder of this

thesis, this lemma shall be used extensively both to characterize and to construct exact

possibilistic descriptions of various sets P if the equality P = C(π) cannot be shown

directly.
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2.3.3 Combinations of Possibilities

Finally, it is possible for the same experiment to be described by several elementary

possibility functions π(1), . . . , π(N) on (Ω,Σ). In the quantitative view of possibilities

advocated in this thesis, the combination of several such possibilistic descriptions reduces

to operations on the corresponding credal sets, i.e. their union and—more importantly—

their intersection.

As demonstrated by Hose and Hanss [HoseHanss21c], several earlier results, e.g. by

Bronevich et al. [Bronevich01, BronevichRozenberg18, BronevichRozenberg19], may be

re-derived under the various IP-Π-transforms.

2.3.3.1 Disjunction

If the possibilistic descriptions are to be combined in a disjunctive manner, i.e., if either of

the descriptions is assumed to be correct, their credal sets must be joined resulting in the

family

Pdisj. =
N⋃
i=1

C(π(i)), (2.54)

which is written as π(1) ∨ . . .∨π(N). An optimal description πdisj. thereof is easily obtained.

Lemma 16. Let π(1), . . . , π(N) be elementary possibility functions on (Ω,Σ). Then, πdisj.

given by

πdisj.(ω) = max
i=1,...,N

π(i)(ω) (2.55)

for all ω ∈ Ω is an optimal possibilistic description of π(1) ∨ . . . ∨ π(N).

Proof. For all E ∈ Σ, the respective upper probability is easily re-written

as supP∈Pdisj. P(E) = maxi=1,...,N supPi∈C(π(i)) Pi(E) = maxi=1,...,N Πi(E) which follows

directly from the coherence of π(1), . . . , π(N). In particular, the optimal plausibilities

are ρopt.
Pdisj.(ω) = maxi=1,...,N π

(i)(ω) for all ω ∈ Ω, which, in turn, yields the optimal

possibilities

πdisj.(ω) = max
i=1,...,N

Πi({ζ ∈ Ω : max
j=1,...,N

πj(ζ) ≤ max
k=1,...,N

πk(ω)}) = max
i=1,...,N

π(i)(ω).

Remark 17. As the maximum of N measurable and normal functions, πdisj. is certainly

measurable and normal.

Notice that this does not provide an exact possibilistic description of Pdisj. because πdisj.

also allows for convex combinations of probability measures from the individual credal sets,

even though these combinations may not be in either of the credal sets themselves. On a
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final note, this solution also coincides with the application of the most popular maximum-

based s-norm for the union of N fuzzy sets [Hanss05] with the respective membership

function π(1), . . . , π(N).

2.3.3.2 Conjunction

If all of the possibilistic descriptions are deemed to be reliable, the credal sets ought to be

intersected as

Pconj. =
N⋂
i=1

C
(
π(i)
)
, (2.56)

written as π(1) ∧ . . . ∧ π(N). A possibilistic description of this conjunction is less straight-

forward than that of their disjunction—not least because the intersection could very well

be empty. The t-norm used for fuzzy set intersections [Hanss05] which is dual to the

maximum-based s-norm (or t-conorm) from the previous discussion of the possibilistic

disjunction is given by the possibilistic copula for non-interaction J NI, to be discussed in

Section 3.5, which produces the element-wise minimum

πmin.(ω) = min
i=1,...,N

π(i)(ω) (2.57)

for all ω ∈ Ω.

As a first step, consider the following lemma stating that comonotonicity is a sufficient

condition for an exact possibilistic description of the possibilistic conjunction.

Lemma 18. Let π(1), . . . , π(N) be N elementary possibility functions on (Ω,Σ). If they

are comonotone, then the element-wise minimum πmin. is an exact possibilistic description

of π(1) ∧ . . . ∧ π(N).

Proof. In Remark 5, it has already been argued that πmin. is an elementary possibil-

ity function, and, therefore, that its credal set is not empty. It remains to be shown

that C(πmin.) = Pconj..

Under Lemma 3, it follows directly that C(πmin.) ⊆ Pconj.. Since πmin.  π(i), ev-

ery P ∈ C(πmin.) is also in C(π(i)) for all i = 1, . . . , N , and therefore also in Pconj..

To see thatPconj. ⊆ C(πmin.), let P ∈ Pconj., i.e., P  π(i) for all i = 1, . . . , N , and let ω ∈ Ω.

Under Lemma 2, it suffices to show that P({ζ ∈ Ω : πmin.(ζ) ≤ πmin.(ω)}) ≤ πmin.(ω). Due

to the comonotonicity, P({ζ ∈ Ω : πmin.(ζ) ≤ πmin.(ω)}) ≤ P(ζ ∈ Ω : π(i)(ζ) ≤ π(i)(ω)) for

all i = 1, . . . , N , and since P  π(i), it follows that P({ζ ∈ Ω : π(i)(ζ) ≤ π(i)(ω)}) ≤ π(i)(ω).

Therefore, P({ζ ∈ Ω : πmin.(ζ) ≤ πmin.(ω)}) ≤ mini=1,...,N π
(i)(ω) = πmin.(ω).

Remark 19. As the minimum of N measurable and normal functions, πconj. is certainly

measurable and normal.
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The applicability of the element-wise minimum may also be derived when changing the

assumption of comonotonicity to that of quasi-vacuousness.

Lemma 20. Let π(1), . . . , π(N) be N elementary possibility functions on (Ω,Σ),

where π(2), . . . , π(N) are quasi-vacuous. Then the element-wise minimum πmin. is an

exact possibilistic description of π(1) ∧ . . . ∧ π(N).

Proof. Under Lemma 3, it follows directly that C(πmin.) ⊆ Pconj.. Since πmin.  π(i),

every P ∈ C(πmin.) is also contained in C(π(i)) for all i = 1, . . . , N , and therefore also

in Pconj..

To see that Pconj. ⊆ C(πmin.), let P ∈ Pconj., i.e., P  π(i) for all i = 1, . . . , N , and

let α ∈ [0, 1]. Under Lemma 1, it suffices to show that P(Sαπmin.) = P(
⋃N
i=1 Sαπ(i)) ≤ α.

Trivially, this is always fulfilled for α = 1, therefore one may now consider the case α < 1

which directly implies that Sα
π(i) = S0

π(i) for all i = 2, . . . , N (but not for i = 1), and

therefore, Sαπmin. = Sα
π(1) ∪ (

⋃N
i=2 S0

π(i)). Since P  π(i), i.e., P(S0
π(i)) = 0, it is clear

that P(
⋃N
i=2 S0

π(i)) ≤
∑N

i=2 P(S0
π(i)) = 0. Finally,

P(Sαπmin.) ≤ P(Sαπ(1)) + P(
N⋃
i=2

S0
π(i)) = P(Sαπ(1)) ≤ α,

i.e., P  πmin., which concludes the proof.

This result also holds true for the conjunction with totally vacuous elementary possibility

functions as a special case of quasi-vacuous elementary possibility functions. The element-

wise minimum, furthermore, produces an exact description of the conjunction if there

exists a total specificity order among the elementary possibility functions.

Lemma 21. Let π(1), . . . , π(N) be N elementary possibility functions on (Ω,Σ) which are

totally ordered with respect to the specificity order such that π(1)  . . .  π(N). Then, the

element-wise minimum πmin. = π(1) is an exact possibilistic description of π(1) ∧ . . . ∧ π(N).

Proof. From the specificity ordering, it is evident that πmin.(ω) = π(1)(ω) ≤ . . . ≤ π(N)(ω)

for all ω ∈ Ω and that C(π(1)) ⊆ . . . ⊆ C(π(N)). Therefore, Pconj. = C(π(1)) = C(πmin.).

If π(1), . . . , π(N) do not fulfill additional assumptions, such as comonotonicity, quasi-

vacuousness or a total specificity order, an exact possibilistic description of the conjunc-

tion π(1) ∧ . . . ∧ π(N) cannot, generally, be provided. This is because the intersection of

credal sets does not usually possess the shape of a credal set itself. Moreover, even the

(Optimal) IP-Π-transform may only be evaluated approximately, i.e., only less specific

outer descriptions can be found.
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Regarding the optimal plausibilities of Pconj., these are always bounded from above by the

element-wise minimum since

ρopt.
Pconj.(ω) = sup

P∈Pconj.

P ({ω}) ≤ min
i=1,...,N

Π(i)({ω}) = min
i=1,...,N

π(i)(ω) (2.58)

for all ω ∈ Ω, which, incidentally, also constitutes the optimal plausibility function in the

above lemmas. Based on these observations, the (potentially non-optimal) elementary

plausibility function for the credal set intersection is chosen to be ρconj. = πmin..

In the general case, this element-wise minimum does not necessarily describe an elementary

possibility function since it may be subnormal; however, as the minimum of N measurable

functions, it is still measurable and does constitute an admissible elementary plausibility

function.

Lemma 22. Let π(1), . . . , π(N) be N elementary possibility functions on (Ω,Σ). Then, the

elementary possibility function πconj. given by

πconj.(ω) = min(1, N · ρconj.(ω)) (2.59)

for all ω ∈ Ω is an outer approximation of the IP-Π-transform of Pconj. under the

elementary plausibility function ρconj..

Proof. Let P ∈ Pconj. and let ω ∈ Ω. The probability mass on the plausibility sublevel

set {ζ ∈ Ω : ρconj.(ζ) ≤ ρconj.(ω)} =
⋃N
i=1{ζ ∈ Ω : π(i)(ω) ≤ ρconj.(ω)} is upper bounded by

P({ζ ∈ Ω : ρconj.(ζ) ≤ ρconj.(ω)}) ≤
N∑
i=1

P({ζ ∈ Ω : π(i)(ω) ≤ ρconj.(ω)}) ≤ N · ρconj.(ω)

or, trivially, by one, and therefore by πconj.(ω) = min(1, N · ρconj.(ω)). That is, πconj. is less

specific than the elementary possibility function resulting from the IP-Π-transform and,

therefore, is an outer approximation.

Remark 23. As the minimum of N+1 measurable functions, πconj. is certainly measurable.

This result has been derived by several authors in different contexts [Bronevich01,

BronevichRozenberg18, BronevichRozenberg19, HoseHanss21c] and numerical experi-

ments suggest that the outer approximation provided by this lemma is generally tight, i.e.

the best possible.

As mentioned earlier, the intersection of the credal sets could potentially be empty. While

this is impossible under the assumptions of Lemma 18 or Lemma 21 because the element-

wise minimum certainly yields a normal elementary possibility function with a non-empty

credal set, this possibility is not a-priori excluded in Lemmas 20 and 22, and may seem

non-trivial to check. However, some general observations can be made:
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� Lemma 20 may produce a sub-normal elementary possibility function. This im-

mediately indicates that the intersection was empty to begin with because the

element-wise minimum is an exact possibilistic description thereof. That is, the

non-emptiness is easy to see.

� Lemma 22 provides an outer approximation which makes things less clear, and a

sufficient criterion for determining whether the intersection is actually empty may

not be given. Here, the normality of πconj. is only a necessary condition, and it could

happen that the intersection is empty despite the normality.

Finally, other choices of the elementary plausibilities are certainly admissible and it does

not seem impossible to find closed expressions of the exact and/or optimal elementary

plausibilities and/or possibilities in further special cases. For instance, Bronevich and

Karkishchenko derive other expressions under a different class of elementary plausibili-

ties [Bronevich01] and Hose and Hanss [HoseHanss21c] generalize their results employing

the IP-Π-transform, which is, however, not relevant for the purposes of this thesis.

The derived expressions for the disjunction and, more importantly, the conjunction of

several elementary possibility functions shall prove useful in the remainder of this thesis.
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Chapter 3

Imprecise Variables

The Guide is definitive. Reality is frequently

inaccurate.

Douglas Adams,

The Restaurant at the End of the Universe

Especially in engineering, the events of interest are usually expressed as some a-priori

unknown quantity Ṽ assuming a certain value or belonging to some set B, e.g. the

measurement error of some sensor being lower than a given threshold. Depending on the

outcome ω ∈ Ω of the experiment, this quantity assumes the value Ṽ (ω) ∈ V. In order to

measure the corresponding events E = {ω ∈ Ω : Ṽ (ω) ∈ B}, they ought to be measurable;

therefore, a V-valued imprecise variable31 is defined as a measurable function Ṽ : Ω → V,

and, by abuse of notation, the event E is expressed as Ṽ ∈ B.

The following discussion usually assumes continuous real-valued imprecise variables,

i.e., V ⊆ RDV , and Borel(-measurable) sets from the corresponding Borel σ-field B(V) as

the events of interest, unless stated otherwise. Still, most results are easily transferable to

other choices of V as well. If, for instance, V is a discrete space, then one may replace B(V)

by 2V.

3.1 Distributions

If M is a measure on the measurable space (Ω,Σ), the corresponding pushforward mea-

sure MṼ : B(V) → [0, 1] of M by the imprecise variable Ṽ , or simply the distribution of Ṽ ,

31The more common term random variable is abandoned in order to emphasize the imprecise probabilistic

approach in this thesis.
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is defined on the measurable space (V,B(V)) via

MṼ (B) = M
(
Ṽ ∈ B

)
= M

(
{ω ∈ Ω : Ṽ (ω) ∈ B}

)
(3.1)

for all B ∈ B(V). Notice that MṼ merely re-expresses the information about (Ω,Σ) by

confining Σ to (measurable) sets of the form Ṽ −1(B) for B ∈ B(V). That is, imprecise

variables do nothing more than restricting Σ to the smaller σ-algebra

Σ|Ṽ =
{
Ṽ −1(B) : B ∈ B(V)

}
. (3.2)

Proposition 24. Let M(1),M(2) be two measures on (Ω,Σ). Inclusion is preserved for the

corresponding distributions, i.e. if M(1)  M(2) then M
(1)

Ṽ
 M

(2)

Ṽ
.

Proof. Let B ∈ B(V). Then M
(1)

Ṽ
(B) = M(1)(Ṽ ∈ B) ≤ M(2)(Ṽ ∈ B) = M

(2)

Ṽ
(B).

A converse result may not be given.

3.1.1 Probability Distributions

Given a probability measure P on the measurable space (Ω,Σ), the pushforward probability

measure PṼ on (V,B(V)) under a univariate V-valued imprecise variable Ṽ , where V ⊆ R,

is described by the cumulative probability (distribution) function (CPF) FṼ : V → [0, 1]

given by

FṼ (v) = P
(
Ṽ ≤ v

)
= PṼ ((−∞, v]) (3.3)

for v ∈ R. All CPFs are non-decreasing and right-continuous, and they provide an exhaus-

tive representation of PṼ . In particular, the probability of an interval (a, b] for a ≤ b can

be obtained via PṼ ((a, b]) = FṼ (b)−FṼ (a), which is, in turn, sufficient to compute PṼ (B)

for arbitrary Borel sets B ∈ B(V) since these may be expressed as unions, intersections

and complements of such intervals. Therefore, PṼ and FṼ can be used interchangeably to

denote a probability distribution.

The complementary CPF F̄Ṽ is given by

F̄Ṽ (v) = P
(
Ṽ ≥ v

)
= PṼ ([v,+∞)) (3.4)

for all v ∈ R, and the (quasi-)inverse F−1

Ṽ
, given by

F−1

Ṽ
(α) = inf {v ∈ V : FṼ (v) ≥ α} (3.5)

for all α ∈ [0, 1], is usually called the quantile function.

The generalization to CPFs of multivariate (V1 × . . . × Vm)-valued imprecise vec-

tors (Ṽ1, . . . , Ṽm) is analogously given by

FṼ1,...,Ṽm(v1, . . . , vm) = P
(
Ṽ1 ≤ v1 ∧ . . . ∧ Ṽm ≤ vm

)
= PṼ1,...,Ṽm ((−∞, v1]× . . .× (−∞, vm])

(3.6)
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for (v1, . . . , vm) ∈ RDV .

In this thesis, every imprecise variable is assumed to follow some (perhaps only imprecisely

known) probability distribution which is, depending on the available description, written

as Ṽ ∼ PṼ , or, equivalently, as Ṽ ∼ FṼ .

3.1.1.1 Uniform Distribution

The most important probability distribution in this thesis is the uniform probability

distribution U(T ) on the set T ∈ B(V) with the finite Lebesgue measure λ(T ) < ∞,

where T usually constitutes an interval or a higher-dimensional box. This probability

distribution assigns to each B ∈ B(V) a probability proportional to the volume of the

intersection with T , i.e.

Punif.
Ṽ

(B) =
λ(B ∩ T )
λ(T )

.

If T = [a, b] is an interval with a < b, then the corresponding CPF is given by

F unif.
Ṽ

(v) =

⎧⎪⎨
⎪⎩

0 if v < a,
v−a
b−a if v ∈ [a, b] and

1 otherwise

(3.7)

for all v ∈ V.

Below, the standard uniform distribution U([0, 1]) serves as a useful reference distribution.

3.1.2 Possibility Distributions

Given an elementary possibility function π on the measurable space (Ω,Σ) and a V-valued

imprecise variable Ṽ , the elementary possibility function πṼ : V → [0, 1] of Ṽ is formally

defined as

πṼ (v) = sup
ω∈Ω : Ṽ (ω)=v

π(ω) (3.8)

for all v ∈ V. This definition is motivated by the following observation. The possibility

distribution ΠṼ on (V,B(V)) defined by Eq. (3.1) can be computed from πṼ via

ΠṼ (B) = sup
ω∈Ω : Ṽ (ω)∈B

π(ω) = sup
v∈B,ω∈Ω : Ṽ (ω)=v

π(ω) = sup
v∈B

πṼ (v) (3.9)

for all B ∈ B(V). That is, πṼ is the elementary possibility function on (V,B(V)) that

corresponds to ΠṼ . For this reason, both πX̃ and ΠX̃ can be used interchangeably to

denote the possibility distribution. A plausibility distribution ρṼ is defined analogously.

Additionally, πṼ also induces the pushforward necessity measure NṼ , the sublevel sets SαπṼ
and the superlevel sets CαπṼ in the familiar way. A possibility distribution is said to be

convex if the latter are convex.
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By Proposition 24, pushforwards and distributions preserve consistency and specificity.

In particular, the relation P  π(1)  π(2) implies PṼ  π
(1)

Ṽ
 π

(2)

Ṽ
, and the credal

set C(πṼ ) of the possibility distribution πṼ is guaranteed to include the set of all admissible

pushforward probability measures under π, which is given by PṼ = {PṼ : P  π}. The
following proposition strengthens the latter observation by showing equality.

Proposition 25. The possibility distribution πṼ is an exact possibilistic description of PṼ .

Proof. From the coherence (∗) of the possibility measure, it follows that for all B ∈ B(V)

sup
PṼ ∈PṼ

PṼ (B) = sup
P�π

P
(
Ṽ ∈ B

)
(∗)
= Π

(
Ṽ ∈ B

)
= ΠṼ (B). (3.10)

Letting B = {v} in Eq. (3.10) yields ρopt.PṼ
(v) = supPṼ ∈PṼ

PṼ ({v}) = ΠṼ ({v}) = πṼ (v)

for all v ∈ V, i.e., the optimal plausibilities of PṼ are given by ρopt.PṼ
= πṼ .

Similarly, considering B = {ξ ∈ V : ρopt.PṼ
(ξ) ≤ ρopt.PṼ

(v)} = {ξ ∈ V : πṼ (ξ) ≤ πṼ (v)}
for v ∈ V in Eq. (3.10) shows that, the requirements in Eq. (2.53) for applying Lemma 15

are met because

supPṼ ∈PṼ
PṼ ({ξ ∈ V : ρopt.PṼ

(ξ) ≤ ρopt.PṼ
(v)}) = ΠṼ ({ξ ∈ V : πṼ (ξ) ≤ πṼ (v)})

Eq. (2.25)
= πṼ (v) = ρopt.PṼ

(v),

and the proposition is proven.

For this reason, possibility distributions also describe imprecise probability distributions.

This is abbreviated as Ṽ ∼ πṼ , which must be understood as Ṽ ∼ PṼ  πṼ , i.e., the

true (but possibly unknown) probability distribution PṼ of Ṽ is consistent with πṼ .

It is, furthermore, possible to extend the notion of the CPF of an imprecise variable to

cumulative possibility distribution functions (CΠF) and cumulative necessity distribution

functions (CNF), via

Π(Ṽ ≤ v) = sup
ξ∈V : ξ≤v

πṼ (ξ) and N(Ṽ ≤ v) = inf
ξ∈V : ξ>v

1− πṼ (ξ) (3.11)

for v ∈ R, or the analog generalization in the multivariate case. Clearly, the CNF and

the CΠF bound all CPFs of consistent probability distributions. However, they are not

a sufficient description of the possibility distribution because πṼ cannot generally be

reconstructed when knowing only the CNF and the CΠF [DesterckeDuboisChojnacki08].

Clearly, it is important to be able to rigorously define both pushforward probability and

pushforward possibility measures in order to be able to talk about (imprecise) probabil-

ity distributions. However, the typical starting point of a possibilistic analysis of some

experiment or process, especially in engineering, is usually more pragmatic: Instead of

introducing a measurable space (Ω,Σ) and defining a (possibility or probability) mea-

sure Π,P : Σ → [0, 1] thereon, it is common and well-accepted to start by considering only
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the imprecise variable Ṽ : Ω → V (or several variables) and provide its pushforwards ΠṼ

and PṼ explicitly. Therefore, in the remainder of this thesis, the existence of the measurable

space (Ω,Σ), of the corresponding possibility and probability measures Π and P thereon,

and of the measurable space (V,B(V)) is implicitly assumed and need not explicitly be

mentioned, e.g., when stating Ṽ ∼ πṼ .

Below, some important possibility distributions and their connection to imprecise prob-

ability distributions are discussed. Depending on the available information about the

true probability distribution, such possibility distributions are the basic building blocks of

every possibilistic model. In this sense, this chapter is to be understood as a knowledge-

based way of describing imprecisely known probability distributions, which contrasts the

data-based construction of elementary possibility functions in Chapter 4. The funda-

mental tool to translate whatever knowledge is available into a possibility distribution

is—again—the IP-Π-transform.

3.1.2.1 Vacuous Distribution

The vacuous (possibility) distribution V(V) corresponds to the pushforward of the vacuous

possibility measure, which has already been introduced in Section 2.3.2.1. It is given

by the vacuous elementary possibility function πvac.
Ṽ

≡ 1 on V and yields upper and

lower probability bounds of Πvac.
Ṽ

(B) = 1 and Nvac.
Ṽ

(B) = 0 for all B ∈ B(V) except

for Πvac.
Ṽ

(∅) = 0 and Nvac.
Ṽ

(V) = 1. In this sense, it does not provide any non-trivial insight,

and corresponds to a complete lack of knowledge or total ignorance about the imprecise

variable, and it is consistent with every probability distribution on (V,B(V)).

Proposition 26. The vacuous possibility distribution V(V) is is an exact possibilistic

description of Pvac.
Ṽ

= P(V,B(V)).

Proof. The proposition follows directly from the trivial upper and lower probability

bounds.

Assuming that V is an exhaustive description of the possible values of the imprecise

variable, it is most certainly always correct—albeit not at all expressive.

3.1.2.2 Quasi-Vacuous Distribution

As a slightly more expressive alternative to the vacuous possibility distribution, consider a

set T ∈ B(V) to which the values of an imprecise variable are known to belong, usually an

interval or higher-dimensional box, but no further indication about the actual probability

distribution is available. The corresponding set of probability distributions

Pquasi−vac.

Ṽ
= {PṼ ∈ P(V,B(V)) : PṼ (T ) = 1} (3.12)
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describes this partial ignorance by only restricting their supports to T .

The quasi-vacuous (possibility) distribution Q(T ) possesses the {0, 1}-valued elementary

possibility function given by the indicator function IT of T , i.e.

πquasi−vac.

Ṽ
(v) = IT (v) =

{
1 if v ∈ T and

0 otherwise
(3.13)

for all v ∈ V.

Proposition 27. The quasi-vacuous possibility distribution Q(T ) is an exact possibilistic

description of Pquasi−vac.

Ṽ
.

Proof. It is straight-forward to see that the optimal plausibilities of Pquasi−vac.

Ṽ
are given

by

ρquasi−vac.

Ṽ
(v) = sup

PṼ ∈Pquasi−vac.

Ṽ

PṼ ({v}) = IT (v) = πquasi−vac.

Ṽ
(v)

for all v ∈ V. By Lemma 15, ρquasi−vac.

Ṽ
is an exact possibilistic description of Pquasi−vac.

Ṽ

because

PṼ

(
{ξ ∈ V : ρquasi−vac.

Ṽ
(ξ) ≤ ρquasi−vac.

Ṽ
(v)}

)
=

{
PṼ (V) = 1 if v ∈ T and

PṼ (¬T ) = 1− PṼ (T ) = 0 otherwise.

In conclusion, it follows that

sup
PṼ ∈Pquasi−vac.

Ṽ

PṼ ({ξ ∈ V : ρquasi−vac.

Ṽ
(ξ) ≤ ρquasi−vac.

Ṽ
(v)}) = IT (v)

for all PṼ ∈ Pquasi−vac.

Ṽ
and v ∈ V.

See Figure 3.1 for a visualization of a quasi-vacuous possibility distribution Q([a, b]).

In essence, πquasi−vac.

Ṽ
is simply the vacuous possibility distribution on the coarser measurable

space (T,B(T )). Its corresponding possibility and necessity measures coincide with the

Boolean versions ΠBool.
Ṽ

= Πquasi−vac.

Ṽ
and NBool.

Ṽ
= Nquasi−vac.

Ṽ
presented in Section 2.1.2.1.

Another name for the quasi-vacuous possibility distribution is ‘uniform possibility distri-

bution’, a name which due to possible confusion with the uniform probability distribution

shall be avoided here; however, it is clear that the latter is consistent with the former,

i.e., U(T )  Q(T ), because Punif.
Ṽ

(T ) = 1, and therefore U(T ) ∈ Pquasi−vac.

Ṽ
.

3.1.2.3 Triangular Distribution

The triangular possibility distribution Δ(a, b, c) is given by

πtria.
Ṽ

(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if v < a,
v−a
b−a if a ≤ v < b,
c−v
c−b if b ≤ v < c and

0 if v ≥ c,

(3.14)
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where a ≤ b ≤ c, see Figure 3.2. Its significance as an imprecise probability distribution is

derived from the fact that all unimodal probability distributions with the mode located

at b and a bounded support inside [a, c] are consistent with it [DuboisEtAl04]. Moreover,

the triangular possibility distribution has, owed to its piecewise linearity, established itself

as a standard input distribution in many academic examples—similar to the uniform and

the Gaussian probability distribution in probability theory. The particular geometric

shape of this distribution function is sometimes also generalized to trapezoidal possibility

distributions.
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Figure 3.1: Quasi-Vacuous Distribu-

tion Q([a, b]).
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Figure 3.2: Triangular Distribu-

tion Δ(a, b, c).

Superuniform Distribution The superuniform possibility distribution of the [0, 1]-

valued superuniform imprecise variable Ṽ is given by πṼ (α) = α for all α ∈ [0, 1] and

constitutes the special case of the triangular distribution, see Fig. 3.3. In this thesis, it is

abbreviated as A = Δ(0, 1, 1) or by simply saying that Ṽ is superuniform. Reasons for the

significance of the superuniform distribution will be provided at various points throughout

the remainder of this thesis.
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Figure 3.3: Superuniform Distribution A.

3.1.3 Deterministic Distributions

A special class of possibility distributions includes only one unique probability distribution

in its credal set. The Deterministic Possibility Distribution D(v∗) = Q({v∗}) arises as
a special case of the quasi-vacuous possibility distribution for T = {v∗}, where v∗ ∈ V.
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It is the opposite of the vacuous possibility distribution in terms of expressiveness and

corresponds to the perfect knowledge that Ṽ ≡ v∗ is actually precise, i.e. deterministic,

and always assumes the value v∗. Its possibility distribution is given by

πdet.
Ṽ

(v) =

{
1 if v = v∗ and

0 otherwise.
(3.15)

The upper and lower probabilities given by

Πdet.
Ṽ

(B) = Ndet.
Ṽ

(B) =

{
1 if v∗ ∈ B and

0 otherwise
(3.16)

express that any event B ∈ B(V) that does not contain v∗ has probability zero and

can be disregarded. Similarly, any event including v∗ certainly has probability one, and

zero otherwise. Moreover, the upper and lower probabilities coincide and, therefore, also

constitute a probability measure Pdet.
Ṽ

= Πdet.
Ṽ

= Ndet.
Ṽ

, see Figure 3.4.
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Figure 3.4: Deterministic distribution D(v∗) (left) and corresponding CPF, CΠF,

and CNF (right).

Every possibility distribution πṼ with a non-empty core admits deterministic distributions

for its most plausible values because, for all c ∈ core(πṼ ), it holds that D(c)  πṼ .

That is, imprecise variables may actually be deterministic variables Ṽ ≡ c; the vacuous

distribution V(V) allowing this for all values in V, and the quasi-vacuous possibility

distribution Q(T ) for all values in T ∈ B(V).

As a consequence, it is especially important to choose the core of a possibility distribution

carefully. In fact, these considerations need already be taken into account when choosing

the elementary plausibility distribution of Ṽ before applying the IP-Π-transform since

all values with maximum elementary plausibilities are guaranteed by their plausibility-

conformity to also have unit elementary possibilities.

This peculiarity also justifies the term ‘imprecise variable’ for quantities described by

a possibility distribution. The variable need not actually be random but can also be

fixed/deterministic but unknown.
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3.1.4 Probability-to-Possibility Transforms

If the true probability distribution is, indeed, known precisely, a variety of possibility

distributions lends itself to encoding this knowledge via a Probability-to-Possibility Trans-

form (P-Π-transform)—even though a precise description thereof can, as discussed above,

usually not be achieved. In terms of the credal set, the question which possibility distribu-

tion to use depends on the other probability distributions one is willing to also admit under

the resulting possibility distribution. It is worth noting that these probability-to-possibility

transforms always loose much information and merely have theoretical rather than a

practical relevance.

As a first step, it is useful to notice that every CPF FṼ of an imprecise variable Ṽ can

also act as a possibility distribution πṼ . Both the normality and the measurability follow

from its monotonicity. Most importantly, the possibility distribution defined by πṼ = FṼ
is consistent with the CPF FṼ itself because

PṼ

(
SαπṼ

)
= PṼ (v ∈ V : FṼ (v) ≤ α) = P

(
FṼ (Ṽ ) ≤ α

)
= α (3.17)

for all α ∈ [0, 1]. The last equality stems from the Probabilistic Universality of the Uniform

to be discussed in Section 3.2.6. This is referred to as the Cumulative P-Π-transform. The

same is true for choosing the complementary CPF as a possibility distribution πṼ = F̄Ṽ ,

which is referred to as the Complementary Cumulative P-Π-transform.

3.1.4.1 The Optimal Probability-to-Possibility Transform

Alternatively, if PṼ is induced by a probability density function pṼ : V → [0,+∞) via

PṼ (B) =

∫
B

pṼ (v) dv (3.18)

for B ∈ B(V), which is also written as Ṽ ∼ pṼ , Dubois et al. propose the Optimal

P-Π-transform [DuboisEtAl04], wherein the probability density acts as the subjective

plausibility ρṼ = pṼ . This choice conforms best to the Principle of Plausibility since the

probability density provides the likelihood, i.e. the relative plausibility, of each realization

of Ṽ .

For instance, the well-known (multivariate) Gaussian/normal probability distribu-

tion N (m,R) is given by the probability density

pGauss.
Ṽ

(v) =
1√

2π det(R)
exp

(
−1

2
(v −m)TR−1(v −m)

)
(3.19)

for v ∈ RDV , where m ∈ RDV is the mean vector and R ∈ RDV×DV is the (positive definite)

covariance matrix. See Figure 3.5 for a visualization of the possibility distributions resulting
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Figure 3.5: Possibilistic descriptions of a univariate Gaussian probability distribution with

mean m ∈ R and variance R = s2 > 0.

from the (Complementary) Cumulative and Optimal Transforms of the univariate Gaussian

distribution.

Other choices of the subjective plausibility include symmetric plausibility distributions, and

contour functions of hyper-boxes and -ellipsoids in higher dimensions, etc. [HoseHanss20,

HoseHanss21c].

3.2 Extension

The extension of possibilistic descriptions of one imprecise variable to descriptions of a

second imprecise variable via a connecting model is among the most basic techniques for

reasoning with possibilities.

The overall goal is to solve those problems where the dependency between the V-valued

imprecise variable Ṽ and the Q-valued imprecise variable Q̃ is provided by the implicit,

deterministic relationship

0 = Ξ
(
Ṽ (ω), Q̃(ω)

)
(3.20)

for all ω ∈ Ω, which is simply written as 0 = Ξ(Ṽ , Q̃), where Ξ : V×Q → RD and 0 may

be a vector of zeros. All that is assumed to be known is Ṽ ∼ πṼ , and the aim is to find a

corresponding possibility distribution of Q̃. Generally, the solution to such problems is

given by the implicit extension. But before considering this general problem, it is expedient

to neglect Eq. (3.20) for a moment and consider the even simpler case of inferring the

underlying possibility space (Ω,Σ, π) via the natural extension of πṼ .

3.2.1 Natural Extension

In Section 3.1.2, it is assumed that the possibility distribution πṼ of the imprecise variable Ṽ

stems from an underlying possibility space consisting of the measurable space (Ω,Σ) and

an elementary possibility function π thereon. This elementary possibility is generally
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unknown, yet the key to solving the implicit extension problem above lies in inferring

implicit possibilistic information about (Ω,Σ) via the natural extension of πṼ because, as

Walley puts it,

“the natural extension may be seen as the basic constructive step in statistical

reasoning; it enables us to construct new [possibility distributions] from old

ones.” [Walley91, pp. 121–122]

In a first step, all admissible probability measures P on the underlying measurable

space (Ω,Σ) that would yield a consistent probability distribution PṼ of Ṽ are gathered

in the family of probabilities

Pnat. = {P ∈ P(Ω,Σ) : PṼ  πṼ }. (3.21)

This set may be viewed as the available information about (Ω,Σ), and it is to be described

possibilistically. In particular, it seems unnatural to artificially exclude probability measures

for the sake of expressiveness or regularity, which, nevertheless, is usual in Bayesian

approaches that require a precise probabilistic specification of the available information.

The natural extension πnat. of πṼ under Ṽ is given by

πnat.(ω) = πṼ (Ṽ (ω)) (3.22)

for all ω ∈ Ω.

Proposition 28. The natural extension πnat. is an exact possibilistic description of Pnat..

Proof. The equality Pnat. = C(πnat.) is shown in two steps.

To see that Pnat. ⊆ C(πnat.), let P ∈ Pnat. and let α ∈ [0, 1]. Then, the corresponding

sublevel set Sαπnat. = {ω ∈ Ω : πnat.
Ṽ

(Ṽ (ω)) ≤ α} is a subset of Ṽ −1(Ṽ (Sαπnat.)) = Ṽ −1(SαπṼ ),
and therefore P(Sαπnat.) ≤ P(Ṽ −1(SαπṼ )) = PṼ (SαπṼ ) ≤ α. The last inequality follows from

the consistency in the definition of Pnat., of which P is an element, and it is concluded

that P ∈ C(πnat.).

Conversely, let P  πnat. and let α ∈ [0, 1]. It follows immediately that

PṼ

(
SαπṼ

)
= P

(
Ṽ −1

(
SαπṼ

))
≤ Πnat.

(
Ṽ −1

(
SαπṼ

))
= sup

ω∈Ω : Ṽ (ω)∈Sα
π
Ṽ

πnat. (ω) ≤ α.

That is, PṼ  πṼ , and therefore C(πnat.) ⊆ Pnat. proving the proposition.

The natural extension primarily serves a theoretical purpose in the sense that it allows

one to extend the possibilistic description from a coarser measurable space (V,B(V)) onto

the finer space (Ω,Σ) without loss of information. With this preliminary result, it is now

straightforward, to solve the implicit extension problem presented above.



60 Chapter 3: Imprecise Variables

3.2.2 Implicit Extension

The problem of extending the possibility distribution πṼ of the imprecise variable Ṽ under

the model in Eq. (3.20) onto the imprecise variable Q̃ may be solved in subsequent steps.

First, it is convenient to notice that Eq. (3.20) is basically only a restriction of the

admissible values of ω ∈ Ω which may be gathered in the feasible set

T =
{
ω ∈ Ω : 0 = Ξ

(
Ṽ (ω) , Q̃ (ω)

)}
. (3.23)

In particular, this does not imply any constraints on the corresponding implicit exten-

sion πimp. on the underlying measurable space (Ω,Σ) other than that, apart from being

confined to Pnat. given by the natural extension πnat. of πṼ , the admissible probabilities

must also belong to the family of probabilities Pfeas. = {P ∈ P(Ω,Σ) : P(T ) = 1}. All

probability mass must additionally be contained inside T , which is exactly described by

the quasi-vacuous possibility distribution Q(T ) with the elementary possibility function IT .
In summary, the imprecise probabilistic information is gathered in the set

Pimp. = Pnat. ∩Pfeas.. (3.24)

The implicit extension πimp. of πṼ under Ṽ and Ξ is defined via

πimp.(ω) = min
(
IT (ω), πnat.(ω)

)
=

{
πṼ

(
Ṽ (ω)

)
if ω ∈ T and

0 otherwise
(3.25)

for all ω ∈ Ω.

Proposition 29. The implicit extension πimp. of πṼ under Ṽ and Ξ is an exact possibilistic

description of Pimp..

Proof. By Propositions 27 and 28, Pnat. and Pfeas. are exactly described by the natural

extension of πṼ and the quasi-vacuous possibility distribution Q(T ), respectively, and one

may apply Lemma 20 for their conjunction.

Second, the possibility distribution of Q̃, which, according to Proposition 25, exactly

describes the set of admissible pushforwards under πimp., is computed from Eq. (3.8) via

πimp.

Q̃
(q) = sup

ω∈Ω : Q̃(ω)=q

πimp.(ω) (3.26)

for all q ∈ Q. Given that πimp.(ω) is only greater than zero if ω ∈ T , this coincides with

the more accessible formula

πimp.

Q̃
(q) = sup

ω∈Ω : 0=Ξ(Ṽ (ω),q)

πṼ

(
Ṽ (ω)

)
= sup

v∈V : 0=Ξ(v,q)

πṼ (v), (3.27)

which is referred to as the (Implicit Possibilistic) Extension Principle.
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Proposition 30. The implicit extension πimp.

Q̃
of πṼ under Ξ is an exact possibilistic

description of the set of all pushforwards of Q̃ that would be admissible under πṼ and Ξ,

i.e. of Pimp.

Q̃
= {PQ̃ : P ∈ Pimp.}.

Proof. By Proposition 29, πimp. is an exact possibilistic description of Pimp., and, by

Proposition 25, πimp.

Q̃
re-expresses this knowledge in the form of a possibility distribution

of Q̃.

To summarize the previous proposition, the implicit extension does not add or subtract

information. It corresponds to the actual state of knowledge about the unknown probability

distribution of Q̃, and, without introducing further assumptions, it is impossible to arrive

at more expressive descriptions.

Equation (3.20) poses some potentially severe restrictions on all P ∈ Pimp. and special

attention must be paid to this fact since Lemma 20 requires Pimp. to be non-empty.

Fortunately, this can be checked via the normality of πimp.

Q̃
. If πimp.

Q̃
is subnormal, then πimp.

must also be subnormal indicating that Pimp. was empty to begin with. More practically

expressed, for all α ∈ [0, 1), there must be at least one combination (v, q) ∈ V×Q such

that πṼ (v) > α and Ξ(v, q) = 0. In the simplest case, it suffices to find one such admissible

combination (vc, qc) with Ξ(vc, qc) = 0 and maximum possibility πṼ (vc) = 1.

3.2.3 Explicit Extension

If Ξ = Q̃− φ(Ṽ ) = 0 describes an explicit dependence of Q̃(ω) on Ṽ (ω), written as

Q̃ = φ(Ṽ ), (3.28)

which is to be understood as the concatenation Q̃ = φ ◦ Ṽ , then the implicit extension

provides a general rule for propagating imprecise variables.

More generally, the pushforward MQ̃ of any capacity M under Q̃ = φ(Ṽ ) can be computed

directly from a given pushforward MṼ via

MQ̃(B) = M
(
Q̃ ∈ B

)
= M

(
φ(Ṽ ) ∈ B

)
= M

(
Ṽ ∈ φ−1(B)

)
= MṼ

(
φ−1(B)

)
(3.29)

for all B ∈ B(Q).

3.2.3.1 Possibility Propagation

The explicit extension πexp.

Q̃
of the input distribution πṼ under φ arises as a special case of

the implicit extension πIE
Q̃

for this specific choice of Ξ in Eq. (3.27) and is given by

πexp.

Q̃
(q) = sup

v∈V : q=φ(v)

πṼ (v) (3.30)
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for q ∈ Q. This formulation not only constitutes a general variant of the Fuzzy Extension

Principle [Zadeh75a, Hanss05] but also induces a possibility measure which coincides with

the pushforward possibility measure ΠQ̃ given by Eq. (3.29). That is,

ΠQ̃(V ) = ΠṼ

(
φ−1(V )

)
= sup

v∈φ−1(V )

πṼ (v) = sup
q∈V

sup
v∈V : q=φ(v)

πṼ (v) = sup
q∈V

πexp.

Q̃
(q) (3.31)

for V ∈ B(Q).

Probability Propagation If MṼ = PṼ is a probability measure, Eq. (3.29) reduces to

the standard rule for propagating random variables [Sullivan15] stating that the probability

distribution PQ̃ = Pφ(Ṽ ) is given by

PQ̃(B) = PṼ
(
φ−1(B)

)
(3.32)

for all B ∈ B(Q), or, if φ is strictly increasing, that the CPF of Q̃ at q ∈ Q is given by

FQ̃(q) = FṼ
(
(−∞, φ−1 (q)

)
. (3.33)

A possibilistic description of Q̃ should, then, be consistent with all probability distribu-

tions Pφ(Ṽ ) that stem from a consistent probability distribution PṼ  πṼ under φ. These

are gathered in the set

Pexp.

Q̃
= {Pφ(Ṽ ) : PṼ  πṼ }. (3.34)

The well-known result [BronevichKlir10, BaudritCousoDubois07, HoseHanss19c] that the

corresponding possibility distribution πexp.

Q̃
as defined in Eq. (3.30) is also consistent with

all PQ̃ ∈ Pexp.

Q̃
is a less general version of Proposition 30, which implies that πexp.

Q̃
is an

exact possibilistic description of Pexp.

Q̃
.

The explicit extension can, e.g., be used for risk propagation as the following example

shows.

Example 5: Forward Extension

A wooden rod with length L = 1m, elastic modulus E = 11GPa, and the area

moment of inertia I = πr2

2
where the radius is r = 0.01m, is subjected to the load F .

For negative load margins

S = F − π2EI

K2L2
< 0,

the structure is considered safe, i.e., the rod will not buckle.32 Due to, e.g., imperfect

boundary conditions, the column effective length factor K may not be determined

exactly; instead, it is modeled as an imprecise input variable K̃ with the possibility

distribution πK̃ shown below. Amongst others, this possibility distribution is

consistent with the probability distribution FK̃ , which is also shown.
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The values of the possibility distribution πS̃ of the output variable S̃ = S̃(K̃) can

then be computed by the explicit extension

πS̃(s) = max

⎛
⎜⎜⎜⎜⎝πK̃

(
−
√
F − s

EI

L

π

)
︸ ︷︷ ︸

=0

, πK̃

(
+

√
F − s

EI

L

π

)
︸ ︷︷ ︸

≥0

⎞
⎟⎟⎟⎟⎠ = πK̃

(√
F − s

EI

L

π

)

for s > 0. Depending on the magnitude of the load F , the probability of stability is

bounded from below and above by the necessity and possibility of S̃ < 0, respectively,

as depicted below. For reference, the probabilities obtained from the propagation of

the (consistent) probability distribution are also shown.
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In the remainder of this thesis, the explicit extension of πṼ under φ is often simply written

as πφ(Ṽ ).

3.2.3.2 Marginalization

A second special case of the explicit extension is marginalization. If MṼ1,...,Ṽm
is a joint

pushforward measure of the imprecise variables Ṽ1, . . . , Ṽm, then the marginal pushfor-

32Both in the expression for I and S, Archimedes’ constant π is not to be confused with an elementary

possibility function.
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ward measure MṼi
of Ṽi for i = 1, . . . ,m is computed via the explicit extension under

the function φ : V1 × . . . × Vm → Vi returning the i-th element φ(v1, . . . , vm) = vi
for (v1, . . . , vm) ∈ V1 × . . .× Vm, and therefore

MṼi
(Bi) = MṼ1,...,Ṽm

(V1 × . . .× Vi−1 × Bi × Vi+1 × . . .× Vm) (3.35)

for all Bi ∈ B(Vi).

In particular, if πṼ1,...,Ṽm is a joint possibility distribution, then the marginal distribution

is obtained via

πṼi(vi) = sup
(v1,...,vi−1,vi+1,...vm)∈V1×...Vi−1×Vi+1×...×Vm

πṼ1,...,Ṽm(v1, . . . , vm) (3.36)

for all vi ∈ Vi. Figuratively, this corresponds to the shadow that πṼ1,...,Ṽm casts onto

the i-th coordinate axis. The reverse question of how to construct joint distributions from

marginals shall be addressed in Section 3.5.

3.2.4 Inverse Extension

The implicit extension also covers the case of inverse dependencies, i.e., Ξ = Ṽ −ψ(Q̃) = 0,

written as

Q̃ = ψ−1(Ṽ ). (3.37)

This is to be understood in the sense that Ṽ is the output of some model ψ : Q → V, and

the corresponding implicit extension, which then reduces to the inverse extension of πṼ
under ψ, seeks to provide a suitable input possibility distribution of Q̃.

Of course, a possibilistic description of Q̃ ought to be consistent with all admissible

probability distributions PQ̃ that yield a consistent pushforward PṼ = Pψ(Q̃) under ψ.

These are gathered in the set

Pinv.
Q̃

= {PQ̃ ∈ P(Q,B(Q)) : Pψ(Q̃)  πṼ }. (3.38)

By Eq. (3.27), the corresponding implicit extension of πinv.
Q̃

is given by

πinv.
Q̃

(q) = πṼ (ψ(q)) (3.39)

for all q ∈ Q. This formulation has first been observed as a solution to inverse fuzzy

arithmetic [HoseHanss18a], i.e. as an inverse operation to the Fuzzy Extension Principle,

and a previous result [HoseHanss19a] states that (the credal set of) πinv.
Q̃

provides a

maximally specific outer approximation of Pinv.
Q̃

. Again, Proposition 30 generalizes this by

showing that πinv.
Q̃

is an exact possibilistic description of Pinv.
Q̃

.

The likeness between the formulations in Eq. (3.22) and Eq. (3.39) indicates that the inverse

extension is closely connected to the natural extension. Both project the information that
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is available on a smaller σ-algebra Σ|Ṽ onto the larger σ-algebras Σ|Q̃ and Σ, respectively,

where

Σ|Ṽ ⊆ Σ|Q̃ ⊆ Σ. (3.40)

This projection follows the same rules, which is, e.g., observed by considering that the

natural extension of πṼ can, in this case, be computed directly from πṼ and Ṽ , or,

equivalently, from πinv.
Q̃

and Q̃ because for all ω ∈ Ω

πnat. (ω) = πṼ

(
Ṽ (ω)

)
= πṼ

(
ψ(Q̃(ω))

)
= πinv.

Q̃

(
Q̃(ω)

)
. (3.41)

This result can, e.g., be used in order to find possibility distributions of imprecise variables

with partially specified quantiles as demonstrated in the following example. In particular,

it eliminates the need for Maximum Entropy-based approaches [De MartinoDe Martino18],

which are employed in various disciplines, e.g. in statistical mechanics [Jaynes57] where

it is necessary to infer an input (a-priori) distribution of an unknown quantity, e.g. the

position or velocity distribution of a particle swarm, from the a-posteriori distribution of a

measurable output quantity, e.g. the energy. These inverse problems generally possess an

infinite number of solutions, and regularizing assumptions, such as maximum entropy of the

input distribution, are needed in order to obtain a unique solution PQ̃ ∈ Pinv.
Q̃

, which—at

least, when considering that imprecise probabilistic techniques are readily available—seems

rather questionable.

Example 6: Inverse Extension

Reconsider Example 5. A company produces wooden rods with length L = 1m,

and the area moment of inertia I = πr2

2
where the radius is r = 0.01m. The elastic

modulus E of the produced rods is assumed to vary according to an unknown

probability distribution PẼ. In order to identify faulty pieces, the last step of the

manufacturing process involves a quality inspection where the rod is subjected to a

load F = 1kN in a controlled experiment with a known effective length factor K = 1.

It is observed that less than 5% of the tested rods do not pass this test, i.e., they

buckle, which is well-expressed by the possibility distribution

πT̃ (0) = 0.05 and πT̃ (1) = 1,

where T̃ = ψ(Ẽ) and

ψ(e) =

{
1 if F − π2I

K2L2 e < 0 and

0 otherwise.

That is, the variable T̃ is one if the rod does not buckle and zero otherwise. It is

straightforward to show that πT̃ is consistent with all probability distributions of PT̃
of T̃ that conform to the empirical observation PT̃ (0) ≤ 0.05.
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This imprecise model allows to infer a possibility distribution πẼ of the imprecise

elastic modulus Ẽ via the inverse extension of πT̃ under ψ. This possibility distri-

bution is shown below. This distribution only states that the 95% quantile of Ẽ is

located at 0.645GPa, and nothing more.
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If the empirical observation is, indeed, correct, this possibility distribution is guar-

anteed to be consistent with the true probability distribution PẼ.

In the remainder of this thesis, the inverse extension of πṼ under ψ is usually written

as πψ−1(Ṽ ).

3.2.4.1 Vacuous Extension

Contrary to marginalization, the vacuous extension formalizes the knowledge about the

imprecise variables Ṽ1, . . . , Ṽm if only the marginal distribution of Ṽi for some i = 1, . . . ,m

is known. Clearly, nothing can be said about the joint distribution, except that its i-th

marginal is πṼi . This is expressed by the inverse extension under ψ : V1 × . . .× Vm → Vi

returning the i-th element ψ(v1, . . . , vm) = vi for (v1, . . . , vm) ∈ V1 × . . . × Vm, which,

then, yields

πQ̃1,...,Q̃m
(v1, . . . , vm) = πQ̃i

(vi). (3.42)

3.2.5 Inverse Explicit Extension and Explicit Inverse Extension

Finally, one may ask whether a repeated application of the implicit extension is able to

recover the original distribution. For instance, an earlier discussion [HoseHanss18a] argues

that the inverse extension is, indeed, inverse to the explicit extension, and vice versa, if φ

and ψ possess certain properties.

Proposition 31. Given an injective function φ : V → Q and an input possibility distribu-

tion πṼ , the inverse extension of the explicit extension of πṼ (both under φ) retrieves πṼ .

Proof. Let v ∈ V. Then, πφ−1(φ(Ṽ ))(v) = πφ(Ṽ ) (φ(v)) = supξ∈V :φ(ξ)=φ(v) πṼ (ξ) = πṼ (v).
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The last equality obtains since the injectivity of φ implies that φ(ξ) = φ(v) is equivalent

to ξ = v.

Proposition 32. Given a surjective function ψ : Q → V and an output possibility

distribution πṼ , the explicit extension of the inverse extension of πṼ (both under ψ)

retrieves πṼ .

Proof. Let v ∈ V. Then,

πψ(ψ−1(Ṽ ))(v) = sup
q∈Q :ψ(q)=v

πψ−1(Q̃)(q) = sup
q∈Q :ψ(q)=v

πṼ (ψ(q)) = πṼ (v).

The last equality obtains since surjectivity implies that for all v ∈ V there exists at least

one q ∈ Q such that ψ(q) = v.

Especially the surjectivity of ψ is a rather technical assumption. In essence, it requires one

to verify that all of the support of πṼ may be reached under ψ and translates to an actual

connection of Ṽ and Q̃ under ψ. The adequacy of this requirement in a model should be

self-evident.

Trivially, if φ is a bijective function with inverse ψ, both propositions apply. It is,

furthermore, possible to generalize these observations in a general proposition about the

involutiveness of the implicit extension. However, the necessary assumptions are quite

restrictive, and individual considerations as discussed above seem favorable.

3.2.6 Elementary Extensions

By the definition of an imprecise variable, an elementary possibility function π : Ω → [0, 1]

is also a [0, 1]-valued imprecise variable π̃. This observation, in connection with the explicit

and implicit extension, can be used to derive possibilistic analogues of two fundamental

probabilistic concepts. These results constitute much of the theoretical significance of the

superuniform distribution.

Notice that the probabilistic results they are inspired by are usually only applicable to

real-valued imprecise variables, i.e. they are restricted to V ⊆ R. However, the possibilistic

variants hold for general V.

3.2.6.1 Possibilistic Universality of the Superuniform

Before discussing the Possibilistic Universality of the Superuniform, the corresponding

concept from probability theory, the Probabilistic Universality of the Uniform, shall be

explained briefly.
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Probabilistic Universality of the Uniform Consider a continuous V-valued imprecise

variable Ṽ that has CPF FṼ . Additionally, assume that FṼ is invertible; however,

this may also be shown for more general CPFs. Then, one may define the imprecise

variable Q̃ = FṼ (Ṽ ). The probability distribution PQ̃ = PFṼ (Ṽ ) can be computed from

Eq. (3.32), and also from Eq. (3.33) because FṼ is strictly increasing. In particular, it

follows for all q ∈ [0, 1] that

FQ̃ (q) = P
(
FṼ (Ṽ ) ≤ q

)
= P

(
Ṽ ≤ F−1

Ṽ
(q)
)
= FṼ

(
F−1

Ṽ
(q)
)
= q. (3.43)

That is, Q̃ has a standard uniform probability distribution U([0, 1]). This result is known
as the Probability Integral Transform [Angus94].

Similarly, one may define πṼ (Ṽ ) where Ṽ is any (not necessarily continuous) V-valued

imprecise variable with possibility distribution πṼ . Then, the explicit extension of πṼ (under

itself) yields

ππṼ (Ṽ )(α) = sup
v∈V :πṼ (v)=α

πṼ (v) =

{
α if ∃v ∈ V : πṼ (v) = α

0 otherwise
(3.44)

for all s ∈ [0, 1]. If πṼ is surjective on [0, 1], equality holds everywhere, but ππṼ (Ṽ )(α) ≤ α

is always true for all α ∈ [0, 1]. Therefore, ππṼ (Ṽ ) is more specific than the superuniform

distribution A, i.e.

ππṼ (Ṽ )  A. (3.45)

Furthermore, the properties of the explicit extension guarantee that ππṼ (Ṽ ) is an exact

possibilistic description of all admissible pushforward probability distributions PπṼ (Ṽ )

of πṼ (Ṽ ). In particular,

PπṼ (Ṽ )  ππṼ (Ṽ ) (3.46)

for all PṼ  πṼ . Combining these two observations yields the Possibilistic Universality of

the Superuniform, i.e. for all PṼ  πṼ

PπṼ (Ṽ )  A. (3.47)

In other words, the consistency criterion provided by Eq. (2.30) reads

P
(
πṼ (Ṽ ) ∈ SαA

)
= P

(
πṼ (Ṽ ) ≤ α

)
≤ α, (3.48)

which, considering that the sublevel sets of the superuniform distribution A for α ∈ [0, 1]

are given by SαA = [0, α], reduces to the equivalent consistency criterion

FπṼ (Ṽ ) (α) ≤ α (3.49)

for all α ∈ [0, 1]. The probability distribution of the possibility distribution of Ṽ must be

superuniform: It must stochastically dominate the uniform probability distribution.33

33The concept of stochastic dominance is discussed in Section 3.3.
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3.2.6.2 Inverse Possibility Transform

Before discussing the Inverse Possibility Transform, the analog concept from probability

theory, the Inverse Probability Integral Transform, must also be explained.

Inverse Probability Integral Transform For a given CPF FQ̃ and a standard uniform

variable Ṽ ∼ U([0, 1]), the imprecise variable Q̃ = F−1

Q̃
(Ṽ ) has the CPF FQ̃, which follows

by an argument similar to Eq. (3.43). This is known as the Inverse Probability (Integral)

Transform or, more commonly, as Inverse Transform Sampling, and it is widely employed

in Monte-Carlo simulations [Sullivan15] or Polynomial Chaos Expansions [Sudret15].

Furthermore, it allows casting every model into a standardized form with uniform input

variables.

Similarly, for a given elementary possibility function πQ̃ and a superuniform variable Ṽ ∼ A,

the imprecise variable Q̃ defined via the inverse relationship Q̃ = π−1

Q̃
(Ṽ ) has the possibility

distribution πQ̃ because for all q ∈ Q the inverse extension of A under πQ̃ is given by

ππ−1

Q̃
(Ṽ )(q) = πṼ

(
πQ̃(q)

)
= πQ̃(q). (3.50)

Similar to the Inverse Probability Integral Transform, this allows to cast every imprecise

model into a standardized form with superuniform input variables only. For instance, the

implicit model in Eq. (3.20), may be re-written in standard form as

Ξ
(
π−1

Ṽ
(Ã), Q̃

)
= 0, (3.51)

which depends only on the superuniform input variable Ã ∼ A.

3.3 Stochastic Dominance

Continuous possibility distributions on V ⊆ R—to which the discussion in this section

and its subsections is, again, restricted—are intricately linked to the concept of stochastic

dominance [Denœux09], which is usually introduced as a partial order between random

variables. According to this definition, a random variable Ṽ1 stochastically dominates the

imprecise variable Ṽ2 if the CPF of the former is lower than or equal to the latter, i.e. if

FṼ1(v) ≤ FṼ2(v) (3.52)

for all v ∈ V. The direction of the inequality implies that Ṽ1 has a higher probability of

being high compared to Ṽ2. Conversely, Ṽ2 has a higher probability of being low compared

to Ṽ1, which justifies this name.

In this thesis, a partial order among CPFs—and not between imprecise variables—is

more convenient. More precisely, if two admissible CPFs F
(1)

Ṽ
, F

(2)

Ṽ
of an imprecise
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variable Ṽ (with unknown true probability distribution) fulfill

F
(1)

Ṽ
(v) ≤ F

(2)

Ṽ
(v) (3.53)

for all v ∈ V, then F
(1)

Ṽ
is said to stochastically dominate F

(2)

Ṽ
, which is written more

concisely as F
(1)

Ṽ
� F (2)

Ṽ
. This is an equivalent concept of stochastic dominance—but with

a focus on CPFs.

Now, reversing the arguments in Section 3.1.4, a non-decreasing possibility distribution

may also act as a CPF.

Proposition 33. If the possibility distribution πṼ of the imprecise variable Ṽ is also a

CPF, then it is an exact representation of the family of probability distributions whose

CPFs stochastically dominate πṼ , i.e. of PṼ = {FṼ ∈ P(V,B(V)) : FṼ � πṼ }.

Proof. Let v ∈ V. As a first step, it is expedient to observe that, if πṼ is a CPF, so

is F ∗
Ṽ
defined by F ∗

Ṽ
(ξ) = πṼ (ξ) if ξ ≥ v and F ∗

Ṽ
(ξ) = 0 otherwise. Both the monotonicity

and the right-continuity of F ∗
Ṽ
follow immediately. Furthermore, this definition implies

that F ∗
Ṽ
∈ PṼ , because F

∗
Ṽ
(ξ) ≤ πṼ (ξ) for all ξ ∈ V. Finally, P∗({v}) = πṼ (v) is the

maximum possible value of PṼ ({v}) ≤ PṼ ((−∞, v]) = FṼ (v) ≤ πṼ (v) for all PṼ ∈ PṼ ,

and therefore, the optimal plausibility of v is given by ρopt.
Ṽ

(v) = πṼ (v). In conclusion, the

sublevel sets of πṼ constitute the sublevel sets of ρopt.
Ṽ

, and, from Eq. (2.25) and by the

coherence of πṼ , the proposition results as a consequence of Lemma 15.

For instance, the superuniform possibility distribution is consistent with the standard

uniform probability distribution U(0, 1) as it coincides with its CPF. By the Proposition 33,

it is also clear that the superuniform distribution is also consistent with all probability

distributions on [0, 1] that stochastically dominate the uniform distribution, see Figure 3.6,

providing further justification for its name.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α

A,U([0, 1])
C(A)

Figure 3.6: Credal Set of Superuniform Distribution.

Proposition 34. If the possibility distribution πṼ of the imprecise variable Ṽ is also a com-

plementary CPF, then it is an exact representation of the family of probability distributions

whose CPFs are stochastically dominated by πṼ , i.e. of P = {FṼ ∈ P(V,B(V)) : πṼ � FṼ }.
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Proof. The proof is similar to that of Proposition 33.

It is easy to see that these propositions are essentially variants of Lemma 3 for in- and

decreasing possibility distributions. Put differently, specificity is an alternative concept of

stochastic dominance.

Since the (Complementary) Cumulative P-Π-transform of PṼ as discussed in Section 3.1.4

yields increasing (decreasing) possibility distributions πṼ , it is also clear that its credal set

then includes all probability distributions that stochastically dominate (are stochastically

dominated by) FṼ—not just FṼ itself. This observation is generalized in the following.

3.3.1 Cumulative Imprecise-Probability-to-Possibility Trans-

forms

The Cumulative IP-Π-transform πCPF
Ṽ

and the Complementary Cumulative IP-Π-trans-

form πCCPF
Ṽ

of a family of probabilities PṼ are given by

πCPF
Ṽ

(v) = sup
FṼ ∈PṼ

FṼ (v) and πCCPF
Ṽ

(v) = sup
FṼ ∈PṼ

1− FṼ (v), (3.54)

for v ∈ V, respectively. It follows immediately that this implies FṼ � πCPF
Ṽ

and πCCPF
Ṽ

� FṼ ,
respectively, for all FṼ ∈ PṼ . As guaranteed by Propositions 33 and 34, this is a

very straight-forward method of encoding such families of probabilities in a possibility

distribution. For instance, the superuniform possibility distribution can be derived

as the Cumulative IP-Π-transform of all probability distributions that stochastically

dominate U([0, 1]).
Moreover, every IP-Π-transform can be viewed as a Cumulative IP-Π-transform of ρ̃ =

ρṼ (Ṽ ), i.e. of Pρ̃ = {PρṼ (Ṽ ) : PṼ ∈ PṼ }, producing πCPF
ρ̃ in connection with the inverse

extension under the map ρṼ yielding

πṼ = πρ−1

Ṽ
(ρ̃) (3.55)

This also justifies thinking of a possibility distributions as a generalization of CPFs.

Clearly, one cannot generally expect to obtain an exact possibilistic description of PṼ by

these transforms; however, the (Complementary) Cumulative IP-Π-transform allows for a

possibilistic approach to a different well-known framework for imprecise probabilities.

3.3.2 Probability Boxes

Probability Boxes (p-boxes) are a convenient way of modeling stochastic dominance from

below and above [FersonEtAl15]. To this end, a p-box is associated with an upper CPF F+

Ṽ
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and a lower CPF F−
Ṽ
, and its credal set contains precisely those CPFs FṼ that stochastically

dominate the former and are stochastically dominated by the latter, i.e.

Pp-box

Ṽ
= {FṼ : F−

Ṽ
(v) ≤ FṼ (v) ≤ F+

Ṽ
(v) ∀ v ∈ V}. (3.56)

The relation between p-boxes and possibility distributions has been of interest to several

scholars [DesterckeDuboisChojnacki08, TroffaesMirandaDestercke13, HoseHanss21c]. The

main connections interpreted in the context of this thesis are given in the following.

P-boxes describe both types of stochastic dominance at once, whereas a possibility distri-

bution can, at the most, describe one such phenomenon—but may also contain entirely

different information if πṼ does not coincide with a (complementary) CPF. It is not

surprising, then, that, due to their specific properties, it is not generally possible to

transform a possibilistic description into a p-box description and vice versa without some

loss of information. The credal set of a possibility distribution and a p-box hardly ever

coincide—with a few notable exceptions.

� By Proposition 33, a possibility distribution πṼ which is also a CPF exactly describes

the p-box with the trivial lower CPF with F−
Ṽ
(v) = 0 for all v <∞ and F−

Ṽ
(∞) = 1

and the upper CPF F+

Ṽ
= πṼ .

� By Proposition 34, a possibility distribution πṼ which is also a complementary CPF

exactly describes the p-box with the lower CPF F−
Ṽ
(v) = 1 − πṼ (v) for all v ∈ V

and the trivial upper CPF with F+(−∞) = 0 and F+

Ṽ
(v) = 1 for v > −∞.

� Conversely, a p-box that is associated with at least one such trival upper or lower

CPF, a so-called one-sided p-box,34 coincides exactly with the credal set of the

corresponding possibility distribution. For instance, if the upper CPF is trivial, then

the appropriate possibility distribution is given by πṼ (v) = 1− F−
Ṽ
(v) for all v ∈ V.

In any case, one may always find conservative outer approximations of one description in

the other framework.

3.3.2.1 From Probability Boxes to Possibilities

In general, every IP-Π-transform is admissible for converting a p-box description into

a possibilistic one. Naturally, the Cumulative IP-Π-transform and the Complementary

Cumulative IP-Π-transform lend themselves to this cause, if only the upper or the lower

CPF is to be preserved since this is equivalent to relaxing the other CPF to be trivial.

The more common P-Box-to-Possibility Transform is obtained by the IP-Π-transform

34An example of a possibility distribution that coincides with a one-sided p-box is given by the

superuniform distribution.
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under the elementary plausibilities ρṼ (v) = min(F+

Ṽ
(v), 1− F−

Ṽ
(v)) for v ∈ V. This choice

puts equal emphasis on both the lower and the upper tails of the p-box and yields the

possibility distribution πp-box

Ṽ
given by

πp-box

Ṽ
(v) = min

(
1, 2F+

Ṽ
(v), 2

(
1− F−

Ṽ
(v)
))

(3.57)

for all v ∈ V, as shown by Hose and Hanss [HoseHanss21c]. A simple deriva-

tion of this result is that, as discussed in Propositions 33 and 34, Destercke et

al. [DesterckeDuboisChojnacki08] correctly identify a p-box as the intersection of the

credal sets of the two possibility measures π
(1)

Ṽ
= F+

Ṽ
and π

(2)

Ṽ
= 1− F−

Ṽ
allowing for the

application of Lemma 22, which yields the above possibility distribution.

Naturally, this is an outer approximation since p-boxes and possibility distributions express

imprecise probabilistic information in fundamentally different ways and it is hardly ever

possible to exactly describe one via the other. For instance, the CΠF and CNF resulting

from the P-Box-to-Possibility Transform will usually be considerably higher than the upper

and considerably lower than the lower CPF values of the original p-box, respectively, even

though—under a loss-free transformation—these values would coincide.

When the p-box is degenerate, i.e. it is a precise probability distribution FṼ = F−
Ṽ

= F+

Ṽ
,

then the corresponding P-Box-to-Possibility Transform is also referred to as the Symmetric

Cumulative P-Π-transform.

3.3.2.2 From Possibilities to Probability Boxes

In contrast to the non-unique choice for converting p-boxes into possibility distributions,

the converse Possibility-to-P-Box Transform is intuitive and straight-forward. Due to the

coherence of the possibility measure, the upper- and lower-most cumulative distributions

in the credal set of an imprecise variable are given by the CΠF and the CNF, respectively,

and choosing these to be the upper and lower CPF of the p-box, i.e.

F+(v) = Π(Ṽ ≤ v) and F−(v) = N(Ṽ ≤ v) (3.58)

for all v ∈ V, is an optimal choice, in the sense that every other outer approximation by a

p-box would be strictly less expressive, i.e., would contain more probability distributions.

Nevertheless, this choice, too, does not coincide with the original credal set. This claim is

verified via the example depicted in Fig. 3.7. The original triangular possibility distribu-

tion πṼ = Δ(1, 4, 7) is outer approximated by the p-box associated with the upper and

lower CPFs given by the former’s CΠF F+

Ṽ
and CNF F−

Ṽ
, respectively. Since the CPF F 0

Ṽ

is within the bounds specified by this p-box, it is a member thereof. However, this CPF

is not contained in the credal set of the original possibility distribution. For F 0
Ṽ
to be a

consistent probability distribution, e.g., the superlevel set C
2
3
πṼ

= (3, 5) would have to have

a probability greater than or equal to 1
3
but P0

Ṽ
(C

2
3
πṼ
) = F 0

Ṽ
(5)− F 0

Ṽ
(3) = 0.
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Figure 3.7: Inconsistent CPF F 0
Ṽ
included in the p-box resulting from Possibility-to-P-Box

Transform of the triangular possibility distribution Δ(1, 4, 7) via corresponding CΠF F+

Ṽ

and CNF F−
Ṽ
.

3.4 Imprecise Expectations and Moments

In probabilistic analyses, the expected value is a fundamental tool for the characterization

of a real-valued imprecise variable. On a probability space, this expected value of the

imprecise variable Ṽ ∼ PṼ is defined as the Lebesgue integral

E[Ṽ ] =

∫
Ω

Ṽ (ω) dP(ω) =

∫
V

v dPṼ (v)

=

∫ 0

−∞
(PṼ ({ξ ∈ R : ξ ≥ v})− 1) dv +

∫ +∞

0

PṼ ({ξ ∈ R : ξ ≥ v}) dv.
(3.59)

and denotes the first moment of Ṽ , which is also abbreviated as E[Ṽ ]. A very simple

intuition behind the expected value comes from stochastic dominance. If the CPFs of

the V-valued imprecise variables Ṽ1 and Ṽ2 fulfill FṼ1 � FṼ2 , then it follows immediately

that

E[Ṽ2] =

∫ 0

−∞

(
PṼ2 ({ξ ∈ R : ξ ≥ v})− 1

)
dv +

∫ +∞

0

PṼ2 ({ξ ∈ R : ξ ≥ v}) dv

≤
∫ 0

−∞

(
PṼ1 ({ξ ∈ R : ξ ≥ v})− 1

)
dv +

∫ +∞

0

PṼ1 ({ξ ∈ R : ξ ≥ v}) dv

= E[Ṽ1].

(3.60)

That is, Ṽ2 is expected to be smaller than Ṽ1 if the (CPF of the) former is stochastically

dominated by the (CPF of the) latter.
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3.4.1 From Possibilities to Moments

A general notion of expectation for real-valued imprecise variables Ṽ : Ω → R under

capacities M on (Ω,Σ) can be defined via the Choquet integral [Choquet54]

EM[Ṽ ] =

∫ 0

−∞

(
M
({
ω ∈ Ω : Ṽ (ω) ≥ v

})
−M(Ω)

)
dv

+

∫ +∞

0

M
({
ω ∈ Ω : Ṽ (ω) ≥ v

})
dv.

(3.61)

which is, for the purposes of this thesis, equivalent to

EM[Ṽ ] =

∫ 0

−∞
(MṼ ({ξ ∈ R : ξ ≥ v})− 1) dv +

∫ +∞

0

MṼ ({ξ ∈ R : ξ ≥ v}) dv. (3.62)

If M is a possibility or necessity measure, then, according to Troffaes et

al. [TroffaesCooman14, Proposition 7.14], this reduces to

EN[Ṽ ] =

∫ 1

0

inf CαπṼ dα and EΠ[Ṽ ] = −EN[−Ṽ ] =

∫ 1

0

sup CαπṼ dα. (3.63)

For instance, the superuniform variable Ṽ ∼ A has a lower expectation of

EN[Ṽ ] =

∫ 1

0

1− v dv =
1

2
(3.64)

and an upper expectation of

EΠ[Ṽ ] =

∫ 1

0

1 dv = 1. (3.65)

If M = P is a probability measure, the corresponding expectation corresponds to the

classical expected value [Denneberg94]. The generalization to expectations of multivariate

imprecise variables is simply the elementwise computation of the marginal expectations.

If a possibilistic description of the imprecise variable Ṽ ∼ πṼ is available, the expec-

tations EΠ[Ṽ ] and EN[Ṽ ] provide upper and lower bounds [DuboisPrade87] of the true

expected value EP[Ṽ ], i.e.

EN[Ṽ ] = inf
P�π

EP[Ṽ ] and EΠ[Ṽ ] = sup
P�π

EP[Ṽ ], (3.66)

which constitutes a more general concept of coherence considering that under this defi-

nition the probability, possibility, necessity, etc. of any event E ∈ Σ may be expressed

as the corresponding expectation of the imprecise variable given by the indicator func-

tion IE. Therefore, they are called upper and lower expected values of Ṽ , or imprecise

expectations. On the basis of such imprecise expectations, a very general framework for

imprecise probabilities may also be formulated, which are then called upper and lower
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previsions [Walley91, AugustinEtAl14]. However, further discussion of the relationship

between possibilities and upper previsions would go far beyond the scope of this thesis.

Finally, the expected value is only the first of many moments of an imprecise variable.

The k-th (absolute) moment of Ṽ ∼ PṼ is given by

EP[Ṽ
k] =

∫
Ω

Ṽ k(ω) dP(ω) =

∫
V

vk dPṼ (v), (3.67)

and the k-th central moment is EP[(Ṽ −EP[Ṽ ])k]. In particular, the second central moment

is called the variance VarP[Ṽ ] = EP[(Ṽ − EP[Ṽ ])2]. By means of the Choquet integral in

Eq. (3.61), the corresponding imprecise (absolute) moments may readily be computed—or

equivalently as the expectation of the corresponding explicit extension; however, at least

in possibility theory, higher-order moments of an imprecise variable generally bear little

information.

3.4.2 From Moments to Possibilities

Conversely, based on well-known probabilistic inequalities, it is also possible to derive

possibility distributions from distributional imprecision due to a limited number of known

moments of an imprecise variable [DuboisEtAl04].

3.4.2.1 Markov Distribution

Suppose that the imprecise variable Ṽ is known to be non-negative with expected

value EP[Ṽ ] = m > 0. In this case, the Markov distribution M(m) provides a possibilistic

description of PMarkov
Ṽ

= {PṼ : P(Ṽ ≥ 0) = 1 ∧ EP[Ṽ ] = m}. The well-known (tight)

Markov inequality states that, under these assumptions,

P
(
Ṽ ≥ v

)
≤ m

v
(3.68)

for v > 0, and by the Complementary Cumulative IP-Π-transform, one immediately

obtains the Markov distribution given by

πMarkov
Ṽ

(v) = min
(
1,
m

v

)
(3.69)

for v ≥ 0 and πMarkov
Ṽ

(v) = 0 for v < 0, see Fig. 3.8. Even though the Markov inequality is

tight, and therefore the Markov distribution is maximally specific, this is not an exact

possibilistic description of PMarkov
Ṽ

. For instance, the lower and upper expectations of Ṽ

under πMarkov
Ṽ

are

EN[Ṽ ] = 0 and EΠ[Ṽ ] = ∞, (3.70)

and therefore, PMarkov
Ṽ

�= C(πMarkov
Ṽ

).
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3.4.2.2 Chebychev Distribution

Similarly, the Chebychev inequality

P
(
|Ṽ −m| ≥ |v −m|

)
≤ s2

(v −m)2
(3.71)

for v ∈ R allows one to derive a possibilistic description of all probability distributions

of the R-valued imprecise variable Ṽ with an expected value of EP[Ṽ ] = m ∈ R and a

variance of VarP[Ṽ ] = s2 > 0. Under the IP-Π-transform with the symmetric plausibility

distribution ρopt.
Ṽ

(v) = exp(−v2) for v ∈ R, the Chebychev distribution M2(m, s2) is given

by

πChebychev

Ṽ
(v) = min

(
1,

s2

(v −m)2

)
(3.72)

for v ∈ R, see Fig. 3.9.
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Figure 3.8: Markov Distribution.
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Figure 3.9: Chebychev Distribution.

Similarly, the k-th order Chebychev Distribution Mk(m, ξk), given by

πChebychev,k

Ṽ
(v) = min

(
1,

ξk

(v −m)k

)
(3.73)

for v ∈ R, is obtained from the general Chebychev inequality for imprecise variables Ṽ

with expected value EP[Ṽ ] = m and k-th central moment EP[(Ṽ −m)k] = ξk.

Many other probabilistic inequalities can be employed to derive such moment-based

possibility distributions. Alternatively, also inequalities based on geometric properties,

such as the Camp-Meidell inequality for unimodal and symmetric distributions may be

exploited [DuboisEtAl04].

As a final remark, the rather large loss of expressiveness when converting partially known

moments into possibility distributions, as indicated by the loss of information about the

expected value in the Markov distribution, suggests that—contrary to very precise IP

descriptions by means of stochastic dominance—possibility theory is not well suited to de-

scribe such distributional imprecision. Instead, distribution-free techniques [FersonGray21]

for the analysis and propagation of such IP descriptions should be employed.
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3.5 Dependency and Interaction

Amongst others, the extension formulations in Eqs. (3.27), (3.30) and (3.39) exhibit a

clear commonality: They require knowledge of the possibility distribution πṼ of Ṽ . Yet,

if Ṽ = (Ṽ1, . . . , Ṽm) is composed of the marginal variables Ṽ1, . . . , Ṽm on V1, . . . ,Vm,

respectively, such joint possibility distribution πṼ1,...,Ṽm cannot always be provided a-priori.

More commonly, only the respective marginal possibility distributions πṼ1 , . . . , πṼm are

available, and it is not immediately clear how to construct the joint distributions πṼ1,...,Ṽm
on V = V1 × . . . × Vm. To be able to do so, one must provide additional dependency

information [CousoMoralWalley00]; however, it is not impossible that one may not or

only partially be able to specify the dependencies. This alone is a source of distributional

imprecision—even when precise marginal probability distributions are available—because

stochastic analyses generally require precise dependency models [WilliamsonDowns90].

In any case, the primary goal must be to find a possibilistic description of the family

of admissible joint probability distributions under the given marginal and dependency

information.

3.5.1 Copulae

Both in the probabilistic and the possibilistic case, dependency information may be

expressed in the form of copulae that connect marginal and joint distributions.

A stochastic/probability copula C : [0, 1]m → [0, 1] is the joint CPF of them-dimensional im-

precise vector (FṼ1(Ṽ1), . . . , FṼm(Ṽm)), where—due to the Probability Integral Transform—

the marginals must have a uniform probability distribution [Joe14]. This stochastic copula

connects the marginal and joint CPFs of Ṽ1, . . . , Ṽm via

FṼ1,...,Ṽm(v1, . . . , vm) = C
(
FṼ1(v1), . . . , FṼm(vm)

)
(3.74)

for all (v1, . . . , vm) ∈ V, which is often written as

FṼ1,...,Ṽm = C
(
FṼ1 , . . . , FṼm

)
. (3.75)

Sklar’s Theorem states that every multivariate CPF may be expressed via the corresponding

marginal CPFs and a stochastic copula, i.e., the latter contains all the dependency

information required to build the joint CPF.

Similarly, a possibility copula J : [0, 1]m → [0, 1] connects the marginal and joint possibility

distributions via

πṼ1,...,Ṽm(v1, . . . , vm) = J
(
πṼ1(v1), . . . , πṼm(vm)

)
(3.76)

for all (v1, . . . , vm) ∈ V, which is also written as πṼ1,...,Ṽm = J (πṼ1 , . . . , πṼm). If a possibility

copula (Π-copula) is employed to connect plausibility distributions, it is also said to be a
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plausibility copula. The joint possibility distribution in Eq. (3.76) is said to be produced

under J .

This definition allows to state, e.g., the implicit extension in Eq. (3.27) under a given Π-

copula J reading

πQ̃(q) = sup
(v1,...,vm)∈V : 0=Ξ(v1,...,vm,q)

J
(
πṼ1(v1), . . . , πṼm(vm)

)
(3.77)

for all q ∈ Q.

Of course, it is desirable that Π-copulae possess certain properties, namely measurability

and normality, which are required so that the joint possibility distribution in Eq. (3.76)

is also a valid elementary possibility function; this is the case for all Π-copulae proposed

in the following. The most important aspect, however, is the dependency information it

encodes.

3.5.2 Non-Interactivity

In the formulation of the original Extension Principle [Zadeh75a], Zadeh implicitly states

that a Π-copula should be derived from some t-norm [Hanss05]. In practice, the t-norm

is often chosen to be the minimum operator, which yields the so called non-interactive

Π-copula

J NI(α1, . . . , αm) = min
i=1,...,m

αi (3.78)

for all α1, . . . , αm ∈ [0, 1]. This choice has already appeared informally in Section 2.3.3.2.

Indeed, this is no coincidence as the conjunction of possibilistic descriptions and the con-

struction of joint possibility distributions are closely related [TroffaesMirandaDestercke13].

Notably, the marginals of J NI(πṼ1 , . . . , πṼm) always coincide with the original marginal

possibility distributions πṼ1 , . . . , πṼm , which is verified by considering

sup
(ξ1,...,ξm)∈V:ξi=vi

J NI
(
πṼ1(ξ1), . . . , πṼm(ξm)

)
= sup

(ξ1,...,ξm)∈V:ξi=vi
min
j=1,...,m

πṼj(ξj)

=min

⎛
⎜⎜⎜⎝ sup
ξ1∈V1

πṼ1(ξ1)︸ ︷︷ ︸
=1

, . . . , sup
ξi−1∈Vi−1

πṼi−1
(ξi−1)︸ ︷︷ ︸

=1

, πṼi(vi),

sup
ξi+1∈Vi+1

πṼi+1
(ξi+1)︸ ︷︷ ︸

=1

, . . . , sup
ξm∈Vm

πṼm(ξm)︸ ︷︷ ︸
=1

⎞
⎟⎟⎟⎠ = πṼi(vi)

(3.79)

for all vi ∈ Vi and all i = 1, . . . ,m. By this observation, the term ‘non-interactivity’ is

not ill-chosen when considering its origins in fuzzy set theory from a subjectivist point of



80 Chapter 3: Imprecise Variables

view. Therein, a membership function, which is—for the purposes of this thesis—the same

as an elementary possibility function, is usually required to be provided by some expert.

Assuming that this expert is in possession of a possibilistic description π of the entire

universe Ω, within which all dependency information has already been accounted for, all of

these membership functions, both the marginals πṼ1 , . . . , πṼm and the joint πṼ1,...,Ṽm , would

then be a corresponding pushforward of π. And non-interactivity expresses nothing other

than the fact that the marginals have been derived as a pushforward of this universal

description, and no further dependencies need to be considered. All dependency information

is already encoded in the marginal possibility distributions warranting an application

of the non-interactive Π-copula. Still, non-interactivity assumes that the expert is in

possession of a single general possibilistic description of the entire universe, or at least the

experiment—a claim that is, at least, debatable when using possibilities as a description

of imprecise probabilities.

Therefore, it is little surprising, that Baudrit et al. point out that possibilistic calculus

based on the non-interactive variant of the Extension Principle is not a conservative

counterpart to probabilistic calculus in most cases [BaudritDuboisGuyonnet06] because

the non-interactive joint possibility distribution rarely preserves consistency—especially

under the popular assumption of stochastic independence. However, this finding directly

violates the Principle of Representation.

Subsequently, more appropriate Π-copulae have been proposed by various schol-

ars [DesterckeDuboisChojnacki09, TroffaesMirandaDestercke13, HoseHanss19c]. Very in-

terestingly, these copulae, too, can be derived under the IP-Π-transform [HoseHanss21c];

however, an exact possibilistic description of the possibilistic information about the

marginals and their dependencies is not generally possible, and the provided closed-form

expressions are often only less specific outer approximations of the respective IP-Π-trans-

form.

The sheer number of possible dependency information does not permit a comprehensive

discussion of all types of (in-)dependence. Instead, only those with an intuitive interpre-

tation that seem to be most applicable in most scenarios shall be investigated, namely

unknown interaction and strong independence.

Due to the apparent similarities between elementary possibilities and p-values, which are to

be explored in the following chapter, many of the obtained Π-copulae are based on methods

for the combination of p-values, a topic which is further explored in Section 4.3.2.2.

3.5.3 Unknown Interaction

The most basic and hardly debatable assumption ismarginal consistency, where all marginal

probability distributions PṼ1 , . . . ,PṼm ought to be consistent with the marginal possibility
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distributions πṼ1 , . . . , πṼm , respectively. No further assumptions are imposed; in particular,

no requirements on the interdependencies constraining the shape of the joint probability

distributions PṼ1,...,Ṽm are given, which is the most conservative dependency assessment

and also referred to as the Fréchet case, the general case, or unknown interaction.

In the absence of additional information about dependencies and interactions, the admissi-

ble family of joint probability distributions is, thus, given by

PUI
Ṽ1,...,Ṽm

=
{
PṼ1,...,Ṽm ∈ P(V,B(V)) : PṼ1  πṼ1 , . . . ,PṼm  πṼm

}
. (3.80)

and the unknown-interaction Π-copula J UI is defined as

J UI(α1, . . . , αm) = min

(
1,m · min

i=1,...,m
αi

)
(3.81)

for all α1, . . . , αm ∈ [0, 1].

Proposition 35. The unknown-interaction Π-copula J UI produces an outer approximation

of PUI
Ṽ1,...,Ṽm

.

Proof. The family PUI
Ṽ1,...,Ṽm

may be re-written as the conjunction π
(1)

Ṽ1,...,Ṽm
∧ . . . ∧ π(m)

Ṽ1,...,Ṽm
,

where the π
(i)

Ṽ1
, . . . , πṼm are the vacuous extensions of π

(i)

Ṽ1,...,Ṽm
for i = 1, . . . ,m, respectively.

As they do not fulfill the assumptions of comonotonicity, quasi-vacuousness or a total

specificity order, the most general Lemma 22 must be applied to evaluate the conjunction,

which yields precisely the joint possibility distribution πṼ1,...,Ṽm that is produced under the

unknown-interaction Π-copula.

This technique for the construction of joint possibility distributions also coincides

with Bonferrroni’s method for combining p-values with an unknown dependency struc-

ture [CramerKamps20].

The advantage of this Π-copula is that it is always applicable because unknown interaction,

requiring only marginal consistency, is the weakest sensible assumption. In this sense,

the fundamental Principle of Representation is never violated and consistency is always

guaranteed—even though its application may not always yield the most specific, admissible

joint possibility distribution.

Naturally, under additional assumptions the joint possibility distribution may become

more expressive, as in the following case, exhibiting an application of the non-interactive

Π-copula.

Proposition 36. The non-interactive Π-copula J NI produces an exact possibilistic de-

scription of PUI
Ṽ1,...,Ṽm

if πṼ1 , . . . , πṼm are quasi-vacuous.

Proof. The proof is the same as that of Proposition 35 except that, instead of Lemma 22,

Lemma 20 can be applied, which then yields the joint possibility distribution that is

produced under the non-interactive Π-copula.
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3.5.4 Strong Independence

Two imprecise variables Ṽ1 and Ṽ2 are—in accordance with the notion of stochastic inde-

pendence introduced earlier—said to be stochastically independent if the joint probability

distribution PṼ1,Ṽ2 is constructed from the marginal probability distributions PṼ1 and PṼ2
via

PṼ1,Ṽ2(B1, B2) = PṼ1(B1) · PṼ2(B2) (3.82)

for all B1 ∈ B(V1) and B2 ∈ B(V2). That is, the information or assumptions about one

variable assuming certain values do not alter the probability distribution of the other

variable; the conditional probability that Ṽ1 is in B1 under the condition that Ṽ2 ∈ B2

remains unchanged, i.e., P(Ṽ1 ∈ B1|Ṽ2 ∈ B2) = P(Ṽ1 ∈ B1).

The generalization to stochastic independence among m imprecise variables, where

PṼ1,...,Ṽm(B1, . . . , Bm) =
m∏
i=1

PṼi(Bi), (3.83)

written as PṼ1,...,Ṽm =
∏m

i=1 PṼi , for all B1 ∈ B(V1), . . . , Bm ∈ B(Vm), is expressed by the

independence P-copula C ind. =
∏
.

Stochastic independence is fundamental to many probabilistic models, and a de-facto

standard assumption in engineering. However, stochastic independence fans out into

various non-equivalent concepts for imprecise probabilities—such as strong independence,

random set independence, or epistemic irrelevance and independence, etc. — that all reduce

to stochastic independence when considering the degenerate case of precise probabilistic

knowledge [AugustinEtAl14, CousoMoralWalley00].

The perhaps most intuitive generalization of stochastic independence to an IP concept

is strong independence. It assumes that the joint probability distributions may only

be constructed from the marginal probability distributions in the credal sets of the

marginal possibility distributions under the assumption of stochastic independence, and

are, therefore, gathered in

PSI
Ṽ1,...,Ṽm

= {PṼ1,...,Ṽm ∈ P(V,B(V)) : PṼ1  πṼ1 , . . . ,PṼm  πṼm ,

PṼ1,...,Ṽm =
m∏
i=1

PṼi}.
(3.84)

3.5.4.1 Minimum-Based Description

Throughout this thesis, the minimum-operator has been used extensively to compute

elementary possibilities and plausibilities from several individual elementary possibilities,

e.g. in the previous Propositions 35 and 36. If only for this continuity, it is worth to

investigate this choice also in the case of strong independence, i.e. the IP-Π-transform
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of PSI
Ṽ1,...,Ṽm

under the joint plausibility distribution ρmin.
Ṽ1,...,Ṽm

produced under the minimum-

based plausibility copula J min.pl. = J UI. The resultingminimum-based strong-independence

Π-copula J min.SI is

J min.SI(α1, . . . , αm) = min
i=1,...,m

1− (1− αi)
m (3.85)

for all α1, . . . , αm ∈ [0, 1].

The following proposition is an earlier result of Hose and Hanss [HoseMäckHanss19a,

HoseHanss19c, HoseHanss21c].

Proposition 37. The minimum-based strong-independence Π-copula J SI,min. produces an

outer approximation of PSI
Ṽ1,...,Ṽm

.

Proof. The proof is based on choosing the unknown-interactivity Π-copula as the plausi-

bility copula J min.pl. = J UI and evaluating the IP-Π-transform T[PSI
Ṽ1,...,Ṽm

, ρmin.
Ṽ1,...,Ṽm

] under

the joint plausibility distribution ρmin.
Ṽ1,...,Ṽm

produced by J min.pl..

Let v1 ∈ V1, . . . , vN ∈ Vm, and define α1 = πṼ1(v1), . . . , αm = πṼ1(v1) as well

as ρ∗ = ρmin.
Ṽ1,...,Ṽm

(v1, . . . , vm) = mini=1,...,m αi. For all PṼ1,...,Ṽm ∈ PSI
Ṽ1,...,Ṽm

it follows that

PṼ1,...,Ṽm

({
ξ1 ∈ V1, . . . , ξN ∈ Vm : ρmin.

Ṽ1,...,Ṽm
(ξ1, . . . , ξm) ≤ ρmin.

Ṽ1,...,Ṽm
(v1, . . . , vm)

})
=1− PṼ1,...,Ṽm

({
ξ1 ∈ V1, . . . , ξN ∈ Vm : ρmin.

Ṽ1,...,Ṽm
(ξ1, . . . , ξm) > ρ∗

})
,

where
{
ξ1 ∈ V1, . . . , ξN ∈ Vm : ρmin.

Ṽ1,...,Ṽm
(ξ1, . . . , ξm) > ρ∗

}
= Cρ∗πṼ1 × . . .×Cρ∗πṼm , and, under

the assumption of strong independence, this may be re-written as

PṼ1,...,Ṽm

({
ξ1 ∈ V1, . . . , ξN ∈ Vm : ρmin.

Ṽ1,...,Ṽm
(ξ1, . . . , ξm) > ρ∗

})
=PṼ1,...,Ṽm

(
Cρ∗πṼ1 × . . .× Cρ∗πṼm

)
=

m∏
i=1

PṼi

(
Cρ∗πṼi

)
.

From the marginal consistency, it follows that PṼi

(
Cρ∗πṼi

)
≥ 1 − ρ∗ for all i = 1, . . . ,m,

and therefore

PṼ1,...,Ṽm

({
ξ1 ∈ V1, . . . , ξN ∈ Vm : ρmin.

Ṽ1,...,Ṽm
(ξ1, . . . , ξm) ≤ ρmin.

Ṽ1,...,Ṽm
(v1, . . . , vm)

})
≤1− (1− ρ∗) = J min.SI(α1, . . . , αm).

Thus, T[PSI
Ṽ1,...,Ṽm

, ρmin.
Ṽ1,...,Ṽm

] is less specific than the joint possibility distribution produced

by the minimum-based strong-independence Π-copula J min.SI and the proposition is

proven.

The same Π-copula can be used in the case of random set indepen-

dence [DesterckeDuboisChojnacki09], which shall not be discussed in this thesis.

Still, it is possible to find alternative Π-copulae for describing strong independence.
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3.5.4.2 Maximum-Based Description

For instance, one may also define a maximum-based plausibility copula

J max.pl.(α1, . . . , αm) = max
i=1,...,m

αi (3.86)

for all α1, . . . , αm ∈ [0, 1], which can be employed to produce a maximum-based de-

scription of strong independence. The resulting maximum-based strong-independence

Π-copula J max.SI, given by

J max.SI(α1, . . . , αm) =

(
max

i=1,...,m
αi

)m
(3.87)

for all α1, . . . , αm ∈ [0, 1], produces a joint possibility distribution that has also been shown

to be adequate in the case of epistemic independence [TroffaesMirandaDestercke13], which

is not discussed here.

Proposition 38. The maximum-based strong-independence Π-copula J max.SI produces an

outer approximation of PSI
Ṽ1,...,Ṽm

.

Proof. The proof is based on the maximum-based plausibility copula J max.pl. and the sub-

sequent evaluation of the IP-Π-transform T[PSI
Ṽ1,...,Ṽm

, ρmax.
Ṽ1,...,Ṽm

] under the joint plausibility

distribution ρmax.
Ṽ1,...,Ṽm

produced by J max.pl..

Let v1 ∈ V1, . . . , vN ∈ Vm, and define α1 = πṼ1(v1), . . . , αm = πṼ1(v1) as well

as ρ∗ = ρmax.
Ṽ1,...,Ṽm

(v1, . . . , vm) = maxi=1,...,m αi. Since{
ξ1 ∈ V1, . . . , ξN ∈ Vm : ρmax.

Ṽ1,...,Ṽm
(ξ1, . . . , ξm) ≤ ρ∗

}
= Sρ∗πṼ1 × . . .× Sρ∗πṼm ,

and under the assumption of strong independence, it follows that

PṼ1,...,Ṽm

({
ξ1 ∈ V1, . . . , ξN ∈ Vm : ρmax.

Ṽ1,...,Ṽm
(ξ1, . . . , ξm) ≤ ρ∗

})
=PṼ1,...,Ṽm

(
Sρ∗πṼ1 × . . .× Sρ∗πṼm

)
=

m∏
i=1

PṼi

(
Sρ∗πṼi

)

for all PṼ1,...,Ṽm ∈ PSI
Ṽ1,...,Ṽm

. From the marginal consistency, it follows that PṼi

(
Sρ∗πṼi

)
≤ ρ∗

for all i = 1, . . . ,m, and therefore

PṼ1,...,Ṽm

({
ξ1 ∈ V1, . . . , ξN ∈ Vm : ρmax.

Ṽ1,...,Ṽm
(ξ1, . . . , ξm) ≤ ρmax.

Ṽ1,...,Ṽm
(v1, . . . , vm)

})
≤ (ρ∗)m = J max.SI(α1, . . . , αm).

Thus, T[PSI
Ṽ1,...,Ṽm

, ρmax.
Ṽ1,...,Ṽm

] is less specific than the joint possibility distribution produced

by the maximum-based strong-independence Π-copula J max.SI, and the proposition is

proven.
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3.5.4.3 Other Descriptions

The minimum and maximum constitute well-known t- and s-norms from fuzzy set theory.

It is, therefore, conjectured that similar strong independence Π-copulae may also be

derived for other t- and s-norms. The proofs of Propositions 37 and 38 are instructive

as to how this may be accomplished: For any joint plausibility distribution produced

under the plausibility copula J pl., the corresponding strong independence Π-copula J SI

is given by the Lebesgue measure, i.e. volume, of the set {z1 ∈ [0, 1], . . . , zN ∈ [0, 1] :

J pl.(z1, . . . , zm) ≤ J pl.(α1, . . . , αm)}, i.e. by the integral

J SI(α1, . . . , αm) = λ
(
{z1 ∈ [0, 1], . . . , zN ∈ [0, 1] : J pl.(z1, . . . , zm) ≤ J pl.(α1, . . . , αm)}

)
=

∫
z1∈[0,1],...,zN∈[0,1]:

J pl.(z1,...,zm)≤J pl.(α1,...,αm)

dz1 . . . dzm

(3.88)

for all α1, . . . , αm ∈ [0, 1]. Figures 3.10, and 3.11 visualize this integration rule for the

minimum- and maximum-based plausibility copulae for m = 2, respectively.

0 J pl.
min.(α1 α2) 1

0

J pl.
min.(α1 α2)

1

J pl.
min.(z1, z2) ≤ J pl.

min.(α1, α2)

z1

z2

Figure 3.10: Integration rule for the

minimum-based strong-independence Π-

copula.

0 J pl.
max.(α1 α2) 1

0

J pl.
max.(α1 α2)

1

J pl.m
ax. (z

1 , z
2 ) ≤ J pl.m

ax. (α
1 , α

2 )

z1

z2

Figure 3.11: Integration rule for the

maximum-based strong-independence Π-

copula.

As an example, applying the integration rule to the product-based plausibility copula

J prod.pl.(α1, . . . , αm) =
m∏
i=1

αi (3.89)

for all α1, . . . , αm ∈ [0, 1] yields the product-based strong-independence Π-copula J prod.SI

given by

J prod.SI(α1, . . . , αm) =

(
m∏
i=1

αi

)
·
m−1∑
k=0

(− log (
∏m

i=1 αi))
k

k!
, (3.90)
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for all α1, . . . , αm ∈ [0, 1], see Fig. 3.12. Incidentally, the perhaps most popular technique

0 J pl.
prod.(α1 α2) 1

0

J pl.
prod.(α1 α2)

1

J pl.
prod.(z1, z2) ≤ J pl.

prod.(α1, α2)

z1

z2

Figure 3.12: Integration rule for the product-based strong-independence Π-copula.

for combining independent p-values is Fisher’s method [Fisher46] and its various extensions

under different types of dependency [KostMcDermott02, Brown75]. Whereas the original

method by Fisher is based on the χ2-distribution, which needs to be approximated

numerically, Jost35 is able to find an explicit formula for this combination, which coincides

precisely with Eq. (3.90).

In conclusion, the minimum-, maximum- and (presumably) product-based strong-

independence Π-copulae may be used to model strong independence, and it cannot

generally be said that one description is preferable over another. The ‘best’ choice is

always context-specific. Numerical experiments suggest that all of the above Π-copulae

produce joint possibility distributions that are as specific as possible—without violating

the Principle of Representation—but all of them also include joint probability distributions

in their credal sets, which are not in PSI
Ṽ1,...,Ṽm

.

Nevertheless, the minimum-based strong-independence Π-copula J min.SI possesses certain

advantageous properties listed in the following that make it the preferred choice in the

remainder of this thesis.

Due to the monotonicity of J min.SI with respect to all arguments, the joint possibility

distribution produced under the minimum-based strong-independence Π-copula may also

be re-written as

πṼ1,...,Ṽm(v1, . . . , vm) = 1−
(
1− min

i=1,...,m
πṼi(vi)

)m
(3.91)

for all v1 ∈ V1, . . . , vm ∈ Vm, and the superlevel sets of this joint distribution reduce to

CαπṼ1,...,Ṽm = C1− m√1−α
πṼ1

× . . .× C1− m√1−α
πṼ1

(3.92)

35http://www.loujost.com/StatisticsandPhysics/SignificanceLevels/CombiningPValues.htm

(accessed on June 30th, 2021)
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for all α ∈ [0, 1]. The joint superlevel sets are a Cartesian product of the marginal superlevel

sets. Moreover, if the marginal superlevel sets of πṼi are convex on all α-levels, then the

joint superlevel sets of πṼ1,...,Ṽm are also convex, which is computationally desirable and

shall prove to be useful in Chapter 5. This makes the minimum-based strong-independence

Π-copula J min.SI the preferred Π-copula when modeling strong independence. For the

sake of brevity it is, henceforth, simply be called the SI-Π-copula J SI. Notice that these

convexity observations also obtain for all other minimum-based Π-copulae, such as the

unknown-interaction and the non-interactive Π-copula.

The following example illustrates how the various Π-copulae produce different joint

possibility distributions and how these may then be extended.

Example 7: Π-Copulae

Consider the two imprecise input variables Ṽ1 ∼ Δ(0, 1, 3) and Ṽ2 ∼ Δ(4, 6, 9) with

triangular possibility distributions and the imprecise output variable Q̃ = Ṽ1 + Ṽ2.

Depending on the available dependency information, different joint possibility distri-

butions of Ṽ1 and Ṽ2 are obtained and the resulting output possibility distribution

of Q̃ changes accordingly. In the following figures, a contour plot of πṼ1,Ṽ2 is shown

on the left and πQ̃ is shown on the right for some exemplary choices of the Π-copula.
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In general, the presented Π-copulae generally loose much of the information contained

in the original family of joint probability distributions, which leads to the heuristic

recommendation that one should employ as few of these Π-copulae as possible when

formulating a possibilistic model. If, for instance, the precise probability distributions

of two independent imprecise variables are known, then it is not recommended to first

perform, e.g., the Optimal P-Π-transform to obtain marginal possibility distributions

and then produce the corresponding joint possibility distribution under the SI-Π-copula.

Instead, one should first assemble the precise joint probability distribution and then

perform, e.g., the Optimal P-Π-transform to obtain a joint possibility distribution. Both

methods are admissible, but the latter, generally, yields more expressive results. Likewise,

if three imprecise variables with available marginal possibility distributions are, e.g., to be

joined under the assumption of unknown interaction, then there are four conceivable ways

in order to accomplish this. They may be expressed as

π
(1)

Ṽ1,Ṽ2,Ṽ3
= J UI

(
πṼ1 ,J

UI
(
πṼ2 , πṼ3

))
,

π
(2)

Ṽ1,Ṽ2,Ṽ3
= J UI

(
πṼ2 ,J

UI
(
πṼ1 , πṼ3

))
,

π
(3)

Ṽ1,Ṽ2,Ṽ3
= J UI

(
πṼ3 ,J

UI
(
πṼ2 , πṼ3

))
and

π
(4)

Ṽ1,Ṽ2,Ṽ3
= J UI

(
πṼ1 , πṼ2 , πṼ3

)
.

(3.93)

Whereas the first three options require two applications of the unknown interaction Π-

copula, the fourth option only requires one application. Therefore, the latter is generally

expected to yield the most expressive results.

Of course, Proposition 36 also obtains in the case of strong independence. By not assuming

any dependency information, it is universally applicable if only the quasi-vacuousness of all

but one marginal possibility distributions is ensured. Since, in this case, the non-interactive

Π-copula produces a more specific joint possibility distribution than the SI-Π-copula, it is

expedient to employ the former whenever all marginal possibility distributions but one are

quasi-vacuous—irrespective of possible dependency information.

A final observation, which is in line with the loss of expressiveness by Π-copulae, is

that the two most important Π-copulae presented in this thesis, namely the SI- and the

UI-Π-copula, produce joint distributions that converge to quasi-vacuous distributions
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for large m. More precisely, interpreting these Π-copulae as a rescaling of the marginal

possibility distributions as explained in Eq. (3.91), all non-zero joint possibilities converge

pointwise to one because the minima of the marginal possibilities are rescaled by a strictly

increasing function of m, see Figs. 3.13 and 3.14. If many marginal imprecise variables are

present in a possilistic model, this becomes an argument for switching to interval calculus

as an easier version of possibilistic calculus with minimal loss of expressiveness.
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Figure 3.13: Marginal-to-joint possibility

rescaling under SI-Π-copula for various

values of m.
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Figure 3.14: Marginal-to-joint possibility

rescaling under UI-Π-copula for various

values of m.

Further discussion regarding copulae in an IP context is given by Schmelzer [Schmelzer15a,

Schmelzer15b], and the connections between probability and possibility copulae are also

investigated by Gray et al. [GrayEtAl21].

Remark 39. The issue of measurability has not been addressed in this chapter, and,

indeed, this point is of little concern. A thorough investigation of the measurability of the

various possibility distributions cannot be postponed indefinitely and should at some point

be considered; still, the purpose of this thesis is a discussion of possibilistic methods for

applied reasoning with imprecise probabilities, but such highly theoretical investigations—

potentially including many technical assumptions, which are, however, easily satisfied

in most realistic scenarios—would seriously impede its readability. Therefore, a general

recommendation that is expected to prevent the vast majority of potential issues is that,

of course, any possibility distribution stated by a modeler should be measurable. Apart

from this trivial requirement, no additional precautions are of essential importance, and

the issue of measurability shall not be addressed in the remainder of this thesis.
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Chapter 4

Possibilistic Statistics

Truth is a compliment we give to our successful

beliefs.

Louis Menand, on William James’ view of truth36

The description of imprecise probabilities is not the only quantitative interpretation of pos-

sibilities; in fact, many other ways of assigning degrees of possibilities have been proposed,

and this section discusses some of these. In particular, it proposes two interpretations

related to (frequentist) statistical inference. The aim is to show that these interpretations

can be tightly linked to possibilistic descriptions of (imprecise) probabilities—in fact, the

former can be derived from the latter—, and that possibility theory provides a powerful

framework for statistical inference, which is easily established and involves mostly straight-

forward computations involving variants of the IP-Π-transform and, to a lesser extent, the

Extension Principle.

Statistical inference typically revolves around the question of what may be learned about

a model from data, particularly about the model’s properties, mainly in the form of its

parameters, and its future outputs. Yet, instead of trying to describe this model from

the given information as done in Chapter 3, an experiment is performed, and data is

collected and used as evidence. This clear emphasis on data and what to learn from them

is the fundamental feature of statistical inference and enables a connection from measure

theories, such as probability and possibility theory, to observations of the real world. In

this sense, every quantitative theory of statistical inference constitutes a ‘mathematical

theory of evidence’ [Shafer76].

The question of how to form and express one’s belief about the (past, current or future)

state of the world, or simply the properties and output of a model, requires some prior

36AoM Podcast #752: The Metaphysical Club, https://www.artofmanliness.com/character/

knowledge-of-men/podcast-752-the-metaphysical-club/ (accessed on November 15, 2021).
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deliberations of a rather philosophical nature. The ongoing debate between Bayesians,

frequentists, etc. shall not be repeated here; instead, the argument by Reid and Cox that

“[...] it is unacceptable if a procedure yielding regions of high [belief] would, if

used repeatedly, give systematically misleading conclusions”

[ReidCox15, p. 295]

seems to be an agreeable starting point for most statisticians, though one may encounter

various meanings and definitions of the term ‘belief’ in the literature. Reid and Cox

speak of “probability in the sense of representing uncertain knowledge”, which many, e.g.

Shafer [Shafer76], would call a ‘Bayesian belief’.

The fundamental Bayesian assumption is that all belief must adhere to the Kolmogorov

axioms of probability theory; it must be described by probabilities. While it is not

immediately apparent why one should wish to manipulate belief according to the rules

of probability theory, Balch et al. even provide compelling arguments in the form of the

False Confidence Theorem that Bayesian beliefs may sometimes fail to satisfy seemingly

trivial requirements, such as the one in the above quote [BalchMartinFerson19].

Having already presented possibility theory as a framework for imprecise probabilities,

which rejects the singular position of probability in measure theory (but acknowledges

its saliency), it is only logical also to investigate possibilistic belief, i.e. belief adhering

to the axioms of possibility theory. Indeed, the point of this chapter is to show that it is

useful to consider (possibilistic) alternatives to Bayesian belief frameworks. This course

of action also continues the axiomatic approach of this thesis and does not necessarily

side with anyone in the philosophical debate, even though the following discussion bears a

strong frequentist (and somewhat fiducial) flavor with many connections to the theory of

confidence procedures.

To summarize, in this chapter, a theory of statistical inference based on possibility theory

is developed that can be understood as a measure-theoretic basis for frequentist confidence

procedures. It is strongly connected to inferential models [MartinLiu15]—in fact, the

derived methodology will constitute special instances thereof—but relies on a slightly

simpler notation at the expense of less generality. For this reason, much of the notation

and terminology follows Martin et al. but is also consistent with many textbooks on

mathematical statistics [Shao03]. Finally, the discussion is restricted to only certain

aspects of statistical inference required to ultimately derive a theory of inference for

dynamical systems in Chapter 6. Many topics, such as non-parametric inference, point

estimation and decision-making, are not treated—despite their importance—and remain

to be investigated.
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4.1 Statistical Setup

The traditional setup in many statistical problems may be described as follows.

An experiment on the probability space (Ω,Σ,P) is performed, and ω ∈ Ω is observed.

Here, the data are considered to be realizations Q̃(ω) = q of the Q-valued imprecise

variable Q̃ with the pushforward probability distribution PQ̃, which is also called the

population.

Formally, the population is known if the value of P(Q̃ ∈ B) = PQ̃(B) may be specified

precisely for all B ∈ B(Q). Then, PQ̃ is perfectly characterized. In any statistical setting,

however, the population is assumed to be (at least partially) unknown. The goal of

statistical inference is to learn PQ̃, or at least to deduce some of its properties, such as,

e.g., means, moments, quantiles, etc.

To this end, a family of candidate probability distributions S ⊆ P(Q,B(Q)) is considered,

to which the population is assumed to belong, i.e., PQ̃ ∈ S. The following discussion

assumes parametric statistical models, i.e.

S =
{
PQ̃|θ ∈ P(Q,B(Q)) : θ ∈ Θ

}
. (4.1)

The actual population PQ̃ = PQ̃|θ∗ is associated with the (unknown) true parameter

value θ∗ ∈ Θ in the parameter space Θ ⊆ RDΘ , which describes the space of possible

parameter combinations, i.e., it describes all conceivable experimental setups. This justifies

thinking of the true parameter θ∗ = θ̂(PQ̃) as the population-dependent output of the

parameter function θ̂ : P(Q,B(Q)) → Θ, as done in some textbooks [Shao03]—similar to

the definition of imprecise variables.

The goal of statistical inference is, in a certain sense, inverse to that of the descriptive

problems considered in earlier chapters. Instead of predicting the values of Q̃ when θ∗ is

available, i.e. when the population is known, the general problem of statistical inference

reduces to the problem of inferring θ∗ from the observations Q̃ = q.

Often, Q̃ = (Q̃1, . . . , Q̃m) is composed of m observations Q̃1 ∼ PQ̃1|θ, . . . , Q̃m ∼ PQ̃m|θ
whose interdependency is described by some P-copula C, i.e., the statistical model is

simply given by

FQ̃|θ = C
(
FQ̃1|θ, . . . , FQ̃m|θ

)
. (4.2)

If C = CI and PQ̃1|θ = . . . = PQ̃m|θ, the observations are said to be independent and

identically distributed (iid).

This setup is not the most general formulation of parametric inference, but it suffices for

the purposes of this thesis.
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4.2 Inferential Models

It is seldom the case that θ∗ may be inferred precisely and that all other values Θ\{θ∗} can

be ruled out conclusively. By the nature of a statistical model, an inverse map q �→ θ∗ from
the observations Q̃ = q to the parameters does not exist—just as little as the knowledge

of the population and/or θ∗ would allow for a precise prediction of the next realization

of Q̃. If two populations can, in principle, produce the same realizations, how should one

be able to decide which one did?

Instead, one may ask questions in the form of hypotheses θ∗ ∈ T for some set T ∈ B(Θ).

The answer to such questions may uniquely be ‘yes’ or ‘no’ but can only be stated with

full confidence, i.e. without (even educated) guessing, if the population, and therefore θ∗,
is known.

A fundamental idea of (frequentist) inference is to let T = T (Q̃) depend on the observa-

tions Q̃ in such a way that probabilities may be specified for the (in-)correct acceptance or

rejection of the hypothesis that θ∗ ∈ T (Q̃). In this sense, frequentist inference constitutes

an a-priori approach to statistical inference because such probabilities P(θ∗ ∈ T (Q̃)) can

only be computed before seeing the data; the a-posteriori probability P(θ∗ ∈ T (q)) after

observing Q̃ = q is either zero or one. That is, an a-priori success probability is associated

with the strategy, or procedure, that generates T (Q̃) and must not be interpreted as the

probability that θ∗ ∈ T (q). Deciding to follow the proposed strategy only implies a certain

probability of success.

This point of view is also the fundamental difference to Bayesian inference, where, broadly

speaking, the unknown parameter is considered to be a Θ-valued imprecise variable θ̃,

whose (posterior) probability distribution Pθ̃|q can be computed via Bayes’ theorem in

order to specify the probability of θ̃ ∈ T given some prior, where T is a fixed set and

independent of the data [Sullivan15].

Including not only the frequentist and the Bayesian approach but also many others, every

map M from S and the observations Q̃ = q (and possible other information, such as, e.g., a

prior) to a data-dependent capacity M(S, q, . . .) = Mθ̂|q on the measurable space (Θ,B(Θ))

constitutes an inferential model (IM) in the sense of Martin and Liu [MartinLiu15]. The

belief and disbelief in the hypothesis θ∗ ∈ T for T ∈ B(Θ) are then expressed by means of

the values of Mθ̂|q(T ) and Mθ̂|q(¬T ). Again, the restriction to hypotheses based on Borel

sets B(Θ) is unnecessarily restrictive but suffices for this thesis.

Such data-dependent capacities are not restricted to any specific shape. They may,

in principle, be probability, possibility or necessity measures, but also upper/lower

probabilities induced by random sets, belief or plausibility measures in the sense of

Shafer, lower previsions, etc. This thesis is restricted to the investigation of IMs pro-

ducing possibility measures, which have, in broad sense, been investigated by sev-
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eral scholars [Fériet82, DuboisPrade86b, Smets90, DuboisPrade90, DuboisDenœux10,

Cuzzolin13, BronevichRozenberg19, DuboisMoralPrade97, DuboisPrade98, Dubois06,

MassonDenœux06, DuboisPrade16, LiuMartin20, HoseHanss20, HoseHanss21c]—and are

now to be connected to the previously established theory of possibilistic descriptions of

imprecise probabilities.

The details of the construction of IMs as proposed by Martin et al., including the association,

prediction and combination step, shall not be discussed, since the construction methods

advocated here follow a slightly different route.

4.2.1 Fundamental Properties

Having found a general definition of IMs, it remains to be established what distin-

guishes ‘good’ from ‘bad’ statistical inference and what constitutes functional IMs. This

question requires a set of fundamental principles on which to base such properties—

similar to Section 2.3.2.1. These can, e.g., be found in the original literature on

IMs [MartinLiu15, LiuMartin20, Martin21] but also in the works of others [ReidCox15].

Some intuition regarding the prudence of these principles shall be provided throughout

the remainder of this chapter.

4.2.1.1 Validity

Validity addresses the issue of calibrating an IM M in such a way that the error rate when

rejecting and accepting hypotheses in the proposed manner is well-controlled.

Consider the hypothesis of θ∗ pertaining to T ∈ B(Θ). Martin et al. speak of validity if all

possible a-priori CPFs of Mθ̂|Q̃(T ) stochastically dominate the uniform distribution, i.e. if

sup
θ∈T

PQ̃|θ
(
{q ∈ Q : Mθ̂|q(T ) ≤ α}

)
≤ α (4.3)

for all α ∈ [0, 1] and for all T ∈ B(Θ). In words, the (upper) probability of the capacity

assigning a certain value to the hypothesis must never be greater than that value. This

tells a statistician that, if their IM yielded α = Mθ̂|q(T ) for the observation Q̃ = q, all

population candidates included by T had a maximum a-priori probability of α to produce

this result.

This definition of validity, which may seem unintuitive at first glance, guarantees that M

provides practical information because it avoids ‘systematically misleading conclusions’. If a

valid IM returns a low value α = Mθ̂|q(T ), one should tend to reject the hypothesis θ∗ ∈ T

because it is guaranteed to have had a low a-priori probability of occurring. If one

repeatedly accepted hypotheses with α � 1, one would have to expect to be wrong with

probability 1 − α, which is then close to one—an unacceptable systematic error in the

words of Reid and Cox.
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Balch et al. show that IMs producing additive belief measures, i.e. Bayesian posterior

probability distributions, are never valid if the prior is not genuine, i.e. perfectly calibrated.

This result is captured in their False Confidence Theorem [BalchMartinFerson19].

As for all non-self-dual monotone measures, validity does not necessarily imply that high

values of α should immediately lead to an acceptance of the hypothesis. Rather, one

should accept the hypothesis if one is willing to reject its alternative θ∗ /∈ T according to

the above considerations, which is expressed by the dual capacity.

Balch rephrases the principle of validity by requiring that “inferential belief be represented

in terms of Neyman-Pearson confidence” [Balch12, p. 1017]. He, furthermore, acknowledges

that it “is not enough to define a unique method of inference” [ibid.] and that an additional

measure of precision is needed. This observation leads to the following concept of efficiency.

4.2.1.2 Efficiency

The concept of efficiency establishes a partial order among IMs and can be used to identify

when one IM is preferable over a second one.

Subject to the validity constraint, more precise evaluations of a hypothesis are clearly

preferable to wider ones. For instance, an IM that always produces the vacuous mea-

sure Mθ̂|q with Mθ̂|q(T ) = 1 for all q ∈ Q and all T ∈ B(Θ) is certainly valid but little

useful because it never leads to the acceptance or rejection of any hypothesis.

Consequently, a simple and sufficient (but not necessary) criterion for better efficiency is

M
(1)

θ̂|q(T ) ≤ M
(2)

θ̂|q(T ) (4.4)

for all q ∈ Q and all T ∈ B(Θ); however, this requirement is quite strong, and a slightly

weaker version is proposed.

Paraphrasing Martin and Liu, the IM M(1) is said to be more efficient with respect to

some T ∈ B(Θ) than the IM M(2) if

sup
θ∈T

PQ̃|θ
(
{q ∈ Q : M

(1)

θ̂|q(T ) ≤ α}
)
≥ sup

θ∈T
PQ̃|θ

(
{q ∈ Q : M

(2)

θ̂|q(T ) ≤ α}
)

(4.5)

for all α ∈ [0, 1]. In words, M(1) is more useful than M(2) because the former allows for

more informed evaluations of the hypothesis θ∗ ∈ T and should clearly be preferred over

the latter. If M(1) is more efficient than the IM M(2) with respect to all T = {θ} for θ ∈ Θ,

it is said to be element-wise more efficient.

Additional intuition concerning the appropriateness of these definitions shall be provided

in Section 4.2.2.2.
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4.2.2 Possibilistic Inferential Models

The above-mentioned concepts of IMs are strongly related to those of possibility theory.

� Consistency and validity calibrate the obtained descriptions of the family of prob-

abilities and the statistical model, respectively. These concepts guarantee that

information, e.g. about upper or a-priori probabilities, is encoded robustly in these

descriptions.

� Specificity and efficiency establish a partial order among possibility distributions

and IMs, respectively by ranking them according to their expressiveness. Subject to

the consistency and validity constraints, this makes certain possibilistic descriptions

or IMs preferable to others, thus avoiding over-conservatism. For instance, both

frameworks allow for the existence of a vacuous measure that is ‘never wrong’ but

contains no information.

Not least due to these similarities, it makes sense to also investigate a special class of

IMs, namely possibilistic inferential models (Π-IMs), written as γθ̂|Q̃. Depending on the

observation Q̃ = q, they produce an elementary possibility function γθ̂|q : Θ → [0, 1], which,

in turn, induces a data-dependent capacity, namely the possibility measure Γθ̂|q : B(Θ) →
[0, 1]. Here, the normality requirement is dropped. That is, in principle, γθ̂|q need only be

an elementary plausibility function; the validity property, however, requires at least some

of them to be normal. The issue of sub-normality is also revisited further below.

In order to avoid confusion with elementary possibility and/or plausibility functions of

imprecise variables, γθ̂|q shall, henceforth, be called an elementary confidence function. The

corresponding possibility measure Γθ̂|q is then called an upper confidence measure and the

corresponding necessity measure Γθ̂|q a lower confidence measure. Since the information

content is the same, any of these objects may be referred to as a confidence distribution.37

If a clearer distinction between the various types of possibility distributions is deemed to

be necessary, possibility distributions of imprecise variables, as considered in the previous

chapters, are also called (IP-)description/descriptive distributions.

The difference between the two types of distributions is straightforward. Whereas IP-

description distributions describe the possible set of probability distributions of an imprecise

variable, confidence distributions grade the possible values of an unknown but precise

parameter.

In this manner, even though (possibilistic) IMs constitute an inherently frequentist approach

to statistical inference, it is still possible to specify a distribution of the unknown parameter.

The fact that this is not a probability distribution only requires an independent investigation

37The proposed definition of a confidence distribution is different from other defini-

tions [ClopperPearson34, Balch12], but related.
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of the appropriate calculus, which turns out to be mathematically equivalent to that of

IP-description distributions.

As for all possibility distributions, the lower and upper confidence measures must satisfy

either Γθ̂|q(T ) = 0 or Γθ̂|q(T ) = 1. That is, the lower and upper confidence values of the

hypothesis θ∗ ∈ T are given by either

(
Γθ̂|q(T ) = 0,Γθ̂|q(T ) = α

)
or

(
Γθ̂|q(T ) = β,Γθ̂|q(T ) = 1

)
(4.6)

for α, β ∈ [0, 1]. In the first case, a low upper confidence value α obtained from a valid

Π-IM should lead to a rejection of the hypothesis θ∗ ∈ T ; in the second case, a high lower

confidence value β should favor its acceptance, as discussed previously. A high α or a

low β, however, should lead to neither a rejection nor an acceptance. In such cases, the

evidence simply does not support these inferences.

The additional feature of Π-IMs, as opposed to classical IMs, is that they are entirely

consonant38 and do not exhibit any internal conflict. For instance, in the first case, the

corresponding lower confidence value implies no evidence in favor of the hypothesis by

a lower confidence value of Γθ̂|q(T ) = 0 because the confidence values of the alternative

hypothesis θ∗ /∈ T read

Γθ̂|q(¬T ) = 1− Γθ̂|q(T ) = 1− α and Γθ̂|q(¬T ) = 1− Γθ̂|q(T ) = 1, (4.7)

That is, a Π-IM “can be described as pointing in a single direction; it is heterogeneous

only in that it varies in the precision of its focus” [Shafer76, p. 219]. With some reason,

Shafer even goes as far as claiming that consonance is natural in statistical inference

because inferential evidence should be regarded as consonant, which further justifies the

investigation of Π-IMs.

On a final note, it is possible to evaluate arbitrary hypotheses of the form θ∗ ∈ T for any

set T ∈ B(Θ); however, by the argument that possibility measures are technically only

concerned with the sub- and superlevel sets of the corresponding elementary possibility

function, meaningful hypotheses about θ∗ will typically only be based on the level sets of

the confidence distribution, i.e.

T = T (q) = Sαγθ̂|q or T = T (q) = Cαγθ̂|q (4.8)

for α ∈ [0, 1] and q ∈ Q.

In the following, the inferential concepts of validity, efficiency and likelihood are investigated

for Π-IMs.

38In the Dempster-Shafer Theory of Evidence, the possibility and necessity measure are called ‘consonant’

plausibility and belief functions, respectively [Shafer76].
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4.2.2.1 Confidence and Validity

Validity bears a striking resemblance to consistency, and, indeed, a criterion that appears

to be very similar to Lemma 1 based on elementary confidence can be deduced.

Lemma 40. A Π-IM γθ̂|Q̃ is valid if and only if

PQ̃|θ
(
{q ∈ Q : γθ̂|q(θ) ≤ α}

)
≤ α (4.9)

for all θ ∈ Θ and all α ∈ [0, 1].

Proof. Let α ∈ [0, 1]. Equation (4.3) follows from Eq. (4.9) due to the inequality

sup
θ∈T

PQ̃|θ
(
{q ∈ Q : Γθ̂|q(T ) ≤ α}

)
= sup

θ∈T
PQ̃|θ

(
{q ∈ Q : sup

θ′∈T
γθ̂|q(θ

′) ≤ α}
)

≤ sup
θ∈T

PQ̃|θ
(
{q ∈ Q : γθ̂|q(θ) ≤ α}

)
≤ α,

which obtains for all T ∈ B(Θ). Conversely, Eq. (4.9) follows from Eq. (4.3) if T = {θ}
for any θ ∈ Θ by considering

α ≥ sup
θ′∈T

PQ̃|θ′
(
{q ∈ Q : Γθ̂|Q̃(T ) ≤ α}

)
= PQ̃|θ

(
{q ∈ Q : Γθ̂|Q̃({θ}) ≤ α}

)
= PQ̃|θ

(
{q ∈ Q : γθ̂|q(θ) ≤ α}

)
.

Martin describes ways of constructing (general) IMs from confidence procedures and

hypothesis tests [Martin21], which indicates a close connection between IMs and frequentist

inference. Upon closer inspection of Eq. (4.9), it becomes evident that Π-IMs, too, are

directly linked to these well-known frequentist concepts.

Confidence Sets The superlevel sets Cαγθ̂|q of a confidence distribution γθ̂|q are confi-

dence sets [Shao03] of the unknown parameter because they possess an a-priori coverage

probability/significance level of 1− α, which is verified by considering

inf
θ∈Θ

PQ̃|θ
(
{q ∈ Q : θ ∈ Cαγθ̂|q}

)
= inf

θ∈Θ
PQ̃|θ

(
{q ∈ Q : γθ̂|q(θ) > α}

)
= 1− sup

θ∈Θ
PQ̃|θ

(
{q ∈ Q : γθ̂|q(θ) ≤ α}

)
≥ 1− α

(4.10)

for all α ∈ [0, 1], where the last inequality follows from the validity criterion in Eq. (4.9).

These sets are also the smallest sets with a lower confidence greater than or equal to 1−α.
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If any of these confidence sets happen to be empty, then a subnormal confidence distribution

has been obtained. Contrary to IP-description distributions, which then lose their coherence

property and do not avoid sure loss anymore, this is not unheard of for confidence

distributions [BallBrittonO’neill02]. Even though a universally accepted interpretation

and treatment of empty confidence sets has not been agreed upon, this issue does not

appear to yield any practical problems.

Hypothesis Testing and P-Values A hypothesis testing problem may be described

as finding an observation-based rule for deciding whether θ∗ ∈ T for some T ∈ B(Θ) is

true or not [Shao03]. For this purpose, two hypotheses are formulated, namely

H0 : θ
∗ ∈ T vs. H1 : θ

∗ /∈ T. (4.11)

The former is called the null hypothesis, whereas the latter is the alternative hypothesis,

and the rule for deciding between either of them is based on an imprecise variable, the

test statistic S̃ : Q → {0, 1}, in a straight-forward manner: After Q̃ = q is observed,

the hypothesis HS̃(q) is accepted. Under such a test, two types of errors can occur: The

type I error when H0 is true but rejected in favor of H1, or the type II error when H0 is

false yet accepted instead of H1. Generally, it is not possible to simultaneously control

both types of errors when formulating a testing procedure, and in practice, a test is

commonly designed such that the probability of a type I error is bounded by some level of

significance α ∈ [0, 1].

Such a test can easily be based on a confidence distribution by defining the test statistic S̃

via

S̃(q) =

{
0 if Γθ̂|q(T ) > α and

1 if Γθ̂|q(T ) ≤ α
(4.12)

because, then, the type I error is bounded by the significance level α ∈ [0, 1] via

sup
θ∈T

PQ̃|θ
(
{q ∈ Q : S̃(q) = 1}

)
= sup

θ∈T
PQ̃|θ

(
{q ∈ Q : Γθ̂|q(T ) ≤ α}

)
=sup

θ∈T
PQ̃|θ

(
{q ∈ Q : sup

θ∈T
γθ̂|q(θ) ≤ α}

)
≤ sup

θ∈T
PQ̃|θ

(
{q ∈ Q : γθ̂|q(θ) ≤ α}

)
≤ α,

(4.13)

where the last inequality follows from Eq. (4.9). By this observation, Γθ̂|q(T ) fulfills the
definition of a p-value, the upper probability of obtaining S̃ = 1 under the condition that the

null hypothesis holds in reality: If this value is small, an event with low a-priori probability

must have occurred in order for the null hypothesis to actually be true. Therefore, the

null hypothesis is accepted if the p-value is strictly greater than the level of significance,

i.e. if Γθ̂|q(T ) > α. If T = {θ} for some θ ∈ Θ, the elementary confidence γθ̂|q(θ) is

simply the elementary p-value of θ with respect to the hypothesis H0 : θ
∗ = θ given the

observation Q̃ = q. To summarize, validity as defined in Eq. (4.9) states that all p-values
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must stochastically dominate the uniform distribution. For the probability of the type II

error, also called the power of the hypothesis test,

sup
θ/∈T

PQ̃|θ
(
{q ∈ Q : S̃(q) = 0}

)
= sup

θ/∈T
PQ̃|θ

(
{q ∈ Q : Γθ̂|q(T ) > α}

)
= sup

θ/∈T
PQ̃|θ

(
{q ∈ Q : sup

θ′∈T
γθ̂|q(θ

′) > α}
)
,

(4.14)

one cannot find an equivalent general bound for Π-IMs.

The advantage of confidence distributions over confidence sets and hypothesis tests is that

its information content is richer, and a significance level need not be fixed in advance.

Instead, one may reason, e.g., with all confidence sets or p-values at once as explained in

the remainder of this chapter.

4.2.2.2 Confidence and Efficiency

Efficiency is the inferential concept that is similar to the descriptive concept of specificity.

It allows to compare two Π-IMs γ
(1)

θ̂|Q̃ and γ
(2)

θ̂|Q̃ associated with the same statistical model

with respect to their expressiveness.

Re-expressing the former definition in Eq. (4.5) for Π-IMs, the Π-IM γ
(1)

θ̂|Q̃ is said to be

element-wise more efficient than the Π-IM γ
(2)

θ̂|Q̃ if

sup
θ∈Θ

PQ̃|θ
(
{q ∈ Q : γ

(1)

θ̂|q (θ) ≤ α}
)
≥ sup

θ∈Θ
PQ̃|θ

(
{q ∈ Q : γ

(2)

θ̂|q (θ) ≤ α}
)

(4.15)

for all α ∈ [0, 1].

Similar to credal subsets, it follows immediately that, if the Π-IM γ
(1)

θ̂|Q̃ is valid and more

efficient than γ
(2)

θ̂|Q̃, then γ
(2)

θ̂|Q̃ is also valid. However, the former should be preferred as it

produces more expressive confidence bounds.

Since (element-wise) efficiency is not as sharp of a concept as specificity, it is not easy to

find alternative, more tangible formulations. By the validity property, both expressions

on the left- and the right-hand side in Eq. (4.15) are bounded from above by α. ‘Good’

(possibilistic) IMs aim at making the confidence distributions as efficient as possible, which

translates to formulating hypothesis tests with desirable statistical properties that make

the p-value ‘as uniformly distributed as possible’ and formulating confidence procedures

that yield as tight as possible confidence sets.

Generally, it is not possible to find a Π-IM γθ̂|Q̃ that achieves

PQ̃|θ
(
{q ∈ Q : γθ̂|q(θ) ≤ α}

)
= α (4.16)

for all α ∈ [0, 1] and all θ ∈ Θ. Instead, a Π-IM is said to be (element-wise) maximally

efficient if the supremum of all produced elementary p-values is uniformly distributed, i.e.
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if

sup
θ∈Θ

PQ̃|θ
(
{q ∈ Q : γθ̂|q(θ) ≤ α}

)
= α (4.17)

for all α ∈ [0, 1]. In this formulation, maximal efficiency naturally entails validity, and the

goal of statistical inference reduces to finding a maximally specific Π-IM γθ̂|Q̃. Maximal

efficiency is, however, not a unique property. That is, different Π-IMs may simultaneously

be maximally efficient with respect to the same statistical model.

Some guidance on how to choose a unique maximally efficient Π-IM may be drawn from

the likelihood principle.

4.2.2.3 Confidence and Likelihood

Similar to IP-description distributions, a confidence distribution produced by a Π-IM

also establishes a plausibility order on Θ. If the p-values of θ, θ′ ∈ Θ exhibit the relation-

ship γθ̂|q(θ) ≤ γθ̂|q(θ
′) for some q ∈ Q, one would be inclined to reject the hypothesis θ∗ = θ

before rejecting θ∗ = θ′, which is consistent with saying that one finds θ′ more plausible

than θ under the given data. Indeed, Martin gives the somewhat non-traditional interpre-

tations that p-values, i.e. elementary confidence values, are “a measure of how plausible

the null hypothesis is” and that confidence sets, i.e., the superlevel sets of a confidence

distribution, are “a set of sufficiently plausible parameter values” [Martin21, p. 2].

Conversely, suppose a statistical model PQ̃|θ be induced by a parameter-dependent prob-

ability mass (density) function pQ̃|θ : Ω → R in the discrete (continuous) case, and the

value Q̃ = q is observed. The function �θ̂|q : Θ → [0,∞) defined by

�θ̂|q(θ) = pθ(q) (4.18)

for all θ ∈ Θ was coined the likelihood function by Fisher; yet, early on it was also known

as the relative plausibility function. It is widely agreed that this function establishes a

very sensible plausibility order on Θ. For instance, in his seminal book, Shafer writes

that “we feel that q renders θ ∈ Θ more plausible than θ′ ∈ Θ whenever pθ(q) > pθ′(q).

It is but a short step from this intuition to the idea that q should lend plausibility to a

singleton”39 [Shafer76, p. 238]. The idea of this plausibility order can, furthermore, be

found in likelihood-ratio tests or the in the law of likelihood [Shao03].

In conclusion, both the confidence distribution and the likelihood function provide plausi-

bility orders on the parameter space Θ, respectively. The lower the plausibility or likelihood

of some hypothesis is, the less one expects it to be true. As they do so with equally good

reasons, it would be desirable to merge both plausibility orders.40

39In this quote, the mathematical notation has been altered in order to fit the notation of this thesis.
40In personal communications, Ryan Martin also affirmed that the plausibility contour of the data-

dependent capacity should, in the best case, be commensurate with the likelihood.
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The simplest way to achieve this is by considering the Π-IMs that return precisely the

likelihood function as a confidence distribution. In fact, one of the first interpretations

of possibilities in a statistical context states that likelihood functions ought to be viewed

as elementary possibility functions [DuboisMoralPrade97, Aickin00, DuboisDenœux10,

Denoeux14, Cattaneo17], a procedure that was already proposed by Shafer [Shafer76,

Ch. 10]. As mentioned earlier, he observes that consonance is natural in statistical

inference, which is substantiated by Wassermann and Denœux, who—in contrast to

Shafer—also provide axiomatic justifications: Wassermann argues in favor of likelihoods

as an elementary belief based on the axioms that a flat likelihood function should lead to

a vacuous belief function, that increasing the likelihood in one point should not decrease

the belief in that same point, and that belief-function inference should be consistent with

Bayesian inference when a Bayesian prior is available [Wasserman90]. Similarly, Denœux

bases his justification on the likelihood principle, compatibility with Bayesian updating,

and a principle of least commitment41 [Denoeux14].

These arguments all seem compelling, but, unfortunately, Π-IMs that produce likelihood

functions as confidence distributions do not generally exhibit validity. To see this, consider

the statistical model PQ̃|θ of the {0, 1}-valued imprecise variable Q̃, given by the probability

mass function

pQ̃|θ(q) =

{
1− θ if q = 0 and

θ if q = 1,
(4.19)

which also constitutes the likelihood function �θ̂|q. That is, the proposed likelihood Π-IM

produces the confidence distributions γθ̂|q(θ) = �θ̂|q(θ) = pQ̃|θ(q) for all θ ∈ [0, 1] and

all q ∈ {0, 1}. But, letting, e.g., θ = 1
2
, which implies that pQ̃|θ(q) =

1
2
for both q = 0

and q = 1, one finds that

PQ̃|θ
(
{q ∈ Q : γq|θ(θ) ≤ 1

2
}
)
= PQ̃|θ

(
{q ∈ Q : �q|θ(θ) ≤ 1

2
}
)

= PQ̃|θ
(
{q ∈ {0, 1} : pQ̃|θ(q) ≤ 1

2
}
)

= PQ̃|θ ({0, 1}) = 1 > 1
2
,

(4.20)

which directly violates Lemma 40. The proposed Π-IM is not valid.42 Moreover, using the

un-scaled likelihood function �θ̂|q(θ) = pQ̃|θ(q) may produce (inadmissible) supernormal

elementary confidence functions if Q is continuous.

The latter issue can, in principle, be obviated by interpreting only relative likelihoods

Λθ̂|q(θ) = c(q) · pQ̃|θ(q) (4.21)

as elementary confidence for θ ∈ Θ given Q̃ = q. Therein, the normalization con-

stant c(q) = (supθ∈Θ pQ̃|θ(q))
−1 is given by the inverse of the maximum likelihood and

41The least commitment principle by Denœux may be thought of as a principle of minimum specificity

or expressiveness.
42A valid Π-IM for this example will be discussed in Ex. 8 further below.
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depends on q only. In fact, Savage and others repeatedly emphasize that the likelihood

function is only defined up to a multiplicative constant, and parameter likelihoods for dif-

ferent data may only be compared by ratios, not by their absolute values, which guarantees

comparability for different pieces of evidence [Shafer76, DuboisMoralPrade97, Cattaneo17].

In principle, letting γθ̂|q(θ) = Λθ̂|q(θ) for all q ∈ Q and all θ ∈ Θ does, indeed, specify a

Π-IM γθ̂|Q̃. Nevertheless, this Π-IM is still not guaranteed to be valid. For instance, in

the above counter-example, the normalization constant is c(q) = 1 both in the case of

observing q = 0 and in the case of observing q = 1. It must be conceded that (relative)

likelihood by itself does not imply validity.

To conclude this section, a very weak Π-IM principle for achieving compatibility between the

plausibility orders of the confidence distribution and the likelihood function is formulated,

which is inspired by the role of the elementary plausibility function in the IP-Π-transform:

The confidence distributions produced by a Π-IM ought to be plausibility-conform to the

likelihood function, i.e., it must be likelihood-conform. However, this principle does not

appear to be as easily satisfiable as the Principle of Plausibility in the IP-Π-transform,

see, e.g., Ex. 9.

Contrary to Wassermann and Denœux, this thesis does, however, not argue that the

principles of validity, efficiency and likelihood conformity only permit Π-IMs. These

principles merely serve as a guideline—just like the principles of quantitative possibility

theory.

The following example discusses the principles of validity, efficiency and likelihood confor-

mity for the most basic statistical model in detail.

Example 8: Bernoulli Π-IM

Similar to above, consider the statistical model of a Bernoulli experiment, e.g. a

coin toss, given by the probability mass function

pQ̃|θ(q) =

{
1− θ if q = 0 and

θ if q = 1,

where Q̃ = 0 for ‘tails’ and Q̃ = 1 for ‘heads’ and θ ∈ [0, 1] denotes the unknown

probability of observing the latter. What can be learned from one coin toss only?

A possibilistic IM γθ̂|Q̃ is given by the values of γθ̂|q(θ) in the following table.

γθ̂|q(θ) θ ≤ 1
2

θ > 1
2

q = 0 1 1− θ

q = 1 θ 1
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If a single experiment is performed (the coin is tossed once) and Q̃ = q is observed,

the Π-IM produces the confidence distributions shown below.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

θ

γθ̂|q=0
γθ̂|q=1

This Π-IM is valid and likelihood-conform but not maximally specific.

Validity can be checked via Lemma 40. For this, let θ ∈ [0, 1], α ∈ [0, 1] and denote

by

B(θ, α) = {q ∈ {0, 1} : γθ̂|q(θ) ≤ α}
the corresponding set-valued argument in Eq. (4.9), whose composition is

detailed in the following.

a) If θ ≤ 1
2
, then 0 ∈ B(θ, α) if and only if α = 1, and 1 ∈ B(θ, α) if and

only if α ≥ θ. Therefore,

PQ̃|θ (B(θ, α)) =

⎧⎪⎨
⎪⎩

0 if α ∈ [0, θ),

θ if α ∈ [θ, 1) and

1 if α = 1.

b) If θ > 1
2
, then 1 ∈ B(θ, α) if and only if α = 1, and 0 ∈ B(θ, α) if and

only if α ≥ 1− θ. Therefore,

PQ̃|θ (B(θ, α)) =

⎧⎪⎨
⎪⎩

0 if α ∈ [0, 1− θ),

1− θ if α ∈ [1− θ, 1) and

1 if α = 1.

In conclusion PQ̃|θ (B(θ, α)) ≤ α for all θ, α ∈ [0, 1], and the validity of the

proposed Π-IM is shown under Lemma 40.

This admits a two-fold interpretation of the obtained confidence distributions.

� The elementary p-values for θ ∈ [0, 1] are given by γθ̂|q(θ) as depicted

below.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

θ

γ

γθ̂|q=0
γθ̂|q=1
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For instance, the elementary p-values of θ = 1 are given by γθ̂|q=0(1) = 0

and by γθ̂|q=1(1) = 1, depending on the observations q ∈ {0, 1}. This is
commensurate with intuition: If ‘heads’ has been observed, it is certainly

plausible that the probablity of ‘heads’ is one; conversely, if ‘tails’ has

been observed, it is entirely implausible for ‘heads’ to have probability

one, i.e. to be (P-almost) sure to occur. The statistical model does not

allow for this possibility, and this hypothesis should certainly be rejected.

� The confidence sets for α ∈ [0, 1] are given by the superlevel sets of γθ̂|q,
which are illustrated in the following.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

θ

α

Cα
γθ̂|q=0Cα
γθ̂|q=1

The 100%-confidence sets

C0
γθ̂|q=0

= C0
γθ̂|q=1

= [0, 1]

coincide; however, e.g. the 50%-confidence sets

C
1
2
γθ̂|q=0

= [
1

2
, 1] and C

1
2
γθ̂|q=1

= [0,
1

2
]

only intersect at θ = 1
2
.

Likelihood Conformity is best inspected visually, see below.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Λθ̂|q(θ)

γ
θ̂
|q
(θ
)

q = 0
q = 1

Both in the case q = 0 and q = 1, the elementary confidence functions are in-

creasing functions of the likelihood, which demonstrates likelihood conformity.

Maximal Efficiency is not generally achieved. Only for α ∈ [0, 1
2
] or α = 1, the

equality in Eq. (4.17) is attained by letting, e.g., θ = α. However, if α ∈ (1
2
, 1),
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one cannot find a θ ∈ [0, 1] such that the equality PQ̃|θ(B(θ, α)) = α holds

because, by the above considerations, this would imply either of the following

contradictions.

� If θ > 1
2
, then 1 − θ < 1

2
< α and B(θ, α) = {0}. But this implies the

contradiction PQ̃|θ (B(θ, α)) = 1− θ < 1
2
< α.

� If θ ≤ 1
2
< α, then B(θ, α) = {1}, which implies the contradic-

tion PQ̃|θ(B(θ, α)) = θ ≤ 1
2
.

In conclusion, PQ̃|θ(B(θ, α)) ≤ 1
2
for all θ ∈ [0, 1) and, e.g., θ = 1

2
yields the

maximum PQ̃|θ= 1
2
(B(θ = 1

2
, α)) = 1

2
for all α > 1

2
. The supremum of the

elementary p-values is also visualized below.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α

P
Q̃
|θ
(B

(θ
,α

)) θ ∈ [0, 1]
sup θ

Maximally efficient Π-IMs for this particular statistical model are, e.g., obtained

in Ex. 9 under both Cumulative P-Γ-transforms for m = 1.

The above example demonstrates that designing a Π-IM and checking validity, expres-

siveness and likelihood conformity can be tedious without some ‘recipe’. In the general

framework of IMs, such a guideline consists of the successive application of the a-, p- and

c-step, which provides guarantees concerning validity and expressiveness. An arguably

more straightforward derivation of Π-IMs from a given statistical model is discussed in

Section 4.3.1.

4.2.3 Possibilistic Predictor Models

It is often desirable to make predictions about future observations Ṽ based on past

observations Q̃ = q if the statistical models

Ṽ ∼ PṼ |θ and Q̃ ∼ PQ̃|θ (4.22)

both depend on the same set of unknown parameters θ ∈ Θ. The application of IMs to

such prediction problems has, e.g., been investigated by Cella and Martin [CellaMartin22].

The discussions in Chapters 2 and 3 fall short regarding the consideration of information

obtained from data. IP-description distributions are used to model unperturbed, certain
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information, and the IP-Π-transform does not take the likelihood of the different probability

measures in the family P into account. The following exposition gives some brief intuition

on how this may be still be achieved in a manner that is consistent with the previous

discussion of possibilistic descriptions and Π-IMs.

Similar to a Π-IM, a Possibilistic Predictor Model (Π-PM) κṼ |Q̃ of Ṽ given Q̃ is any map

that produces an elementary possibility function κṼ |q : V → [0, 1], a so-called elementary

prediction function of Ṽ , given an observation Q̃ = q. The induced necessity and possibility

measures K Ṽ |q : B(V) → [0, 1] and K Ṽ |q : B(V) → [0, 1] are also data-dependent capacities

and are called lower and upper prediction measures, respectively. Either of these objects

may also be called a prediction distribution of Ṽ .

These prediction distributions are not to be confused with those of, e.g., Lawless and

Fredette [LawlessFredette05], whose predictor models produce probabilistic prediction

distributions adhering to the Kolmogorov axioms. Nevertheless, they are related by what

they intend to describe.

4.2.3.1 Perceptiveness

Similar to the validity criterion in Eq. (4.9)—and with similar reasons—, a Π-PM is said

to be perceptive if

sup
PṼ ,Q̃∈S

PṼ ,Q̃

({
(v, q) ∈ V×Q : κṼ |q(v) ≤ α

})
≤ α (4.23)

for all α ∈ [0, 1]. Perceptiveness can be related to the concept of type-2 validity introduced

by Cella and Martin [CellaMartin22], which—applied to Π-PMs—translates to

sup
PṼ ,Q̃∈S

PṼ ,Q̃

({
(v, q) ∈ V×Q : K Ṽ |q(B) ≤ α ∧ v ∈ B

})
≤ α (4.24)

for all B ∈ B(V) and all α ∈ [0, 1].

Proposition 41. A perceptive Π-PM κṼ |Q̃ is type-2 valid.

Proof. To show that Eq. (4.23) implies Eq. (4.24), let α ∈ [0, 1], let B ∈ B(V), and consider

any v ∈ B and q ∈ Q with K Ṽ |q(B) ≤ α. Then, κṼ |q(v) ≤ supv′∈B κṼ |q(v
′) = K Ṽ |q(B) ≤ α

implies that

sup
PṼ ,Q̃∈S

PṼ ,Q̃

({
(v, q) ∈ V×Q : K Ṽ |q(B) ≤ α ∧ v ∈ B

})
≤ sup

PṼ ,Q̃∈S
PṼ ,Q̃

({
(v, q) ∈ V×Q : κṼ |q(v) ≤ α

})
≤ α.
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The converse, i.e. that type-2 validity implies perceptiveness, does not appear to be

generally true—even though, as of yet, it cannot be ruled out conclusively.

It must be stressed that the interpretation of the prediction distribution κṼ |q is very different

from that of a simple IP description πṼ ; on the contrary, the information contained in a

prediction distribution is much more similar to the information contained in a confidence

distribution than to that in an IP description.

Whereas, e.g., the possibility measure corresponding to πṼ provides an actual upper

bound ΠṼ (B) on the probability PṼ (B) of the event Ṽ ∈ B for some B ∈ B(V), the

boundK Ṽ |q(B) induced by κṼ |q is not to be understood as rigorously. Instead, it is—again—

based on a-priori probabilities that rule out ‘unacceptable systematic errors’. If κṼ |q(v)
is small, then the event leading to the combination (v, q) must—under any admissible

population candidate—be somewhat improbable, and it is reasonable to regard it as

implausible or surprising for Q̃ = q to also occur after having seen Ṽ = v.

In other words, the type-2 validity implied by the perceptiveness of the prediction dis-

tribution states that, for any α ∈ [0, 1], the probability that the probability of the

events K Ṽ |Q̃(B) ≤ α and Ṽ ∈ B occuring simultaneously is bounded by Eq. (4.24).

Agreeing on the strategy of predicting that the next realization of Ṽ will fall into B if

the observation Q̃ = q yields K Ṽ |q(B) ≤ α can be expected to be a successful prediction

with at most probability α. Conversely, following, e.g., the strategy of predicting Ṽ /∈ B

when K Ṽ |q(B) is close to zero, is guaranteed to be successful with a probability close to

one. Nevertheless, all these probabilities are obtained before seeing the data and make

statements about the particular prediction strategy based on the Π-PM only. The actual

probability PṼ (B) = P(Ṽ ∈ B) will usually be entirely different from K Ṽ |q(B).

Prediction Sets Similar to confidence sets, the superlevel sets CακṼ |q
produced by a

perceptive Π-PM κṼ |Q̃ also fulfill the traditional (frequentist) definition of a prediction

set [Shao03], namely that they have a guaranteed coverage probability of

inf
θ∈Θ

PṼ ,Q̃|θ
({

(v, q) ∈ V×Q : v ∈ CακṼ |q

})
= inf

θ∈Θ
PṼ ,Q̃|θ

({
(v, q) ∈ V×Q : κṼ |q(v) > α

})
=1− sup

θ∈Θ
PṼ ,Q̃|θ

({
(v, q) ∈ V×Q : κṼ |q(v) ≤ α

})
≥ 1− α

(4.25)

for all α ∈ [0, 1]. Again, this bound is not to be understood as an a-posteriori probability

of Ṽ ∈ CακṼ |q
after seeing Q̃ = q. It is the a-priori probability that Ṽ will fall into the

prediction distributions’ superlevel sets before making observations. If these sets are

constructed according to the Π-PM, the strategy of predicting that the realization Ṽ = v

is in CακṼ |q
, before seeing Q̃ = q, has a success probability of at least 1− α.

While prediction distributions are not IP-description distributions, the assertions made

through an IP description πṼ also possess a predictive interpretation. Under the assmuption
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that PṼ |θ  πṼ for all θ ∈ Θ, predicting that Ṽ ∈ B if ΠṼ (B) ≤ α, has a success probability

of at most α. Therefore, πṼ = κṼ |∅ is a special type of Π-PM for Q̃ = ∅ because then

Eq. (4.23) reads

sup
θ∈Θ

PṼ |θ
({
v ∈ V : κṼ |∅(v) ≤ α

})
= sup

θ∈Θ
PṼ |θ

(
SαπṼ

)
≤ α (4.26)

for all α ∈ [0, 1], which follows from PṼ |θ  πṼ for all θ ∈ Θ. The converse is, however,

not true. By observing Q̃ = q, additional evidence with respect to the confidence in the

various parameter values θ ∈ Θ can be gathered, which naturally allows for more expressive

predictions of the future values of Ṽ , but it is certainly false to presume that PṼ  κṼ |q
for all q ∈ Q.

Put differently, perceptiveness is a (weaker) concept for prediction distributions, whereas

consistency is a (stronger) descriptive concept that serves a theoretical purpose and can

only indirectly be connected to prediction distributions, e.g., via the methods described in

Section 4.3.3.

4.3 Possibilistic Inference

This section presents novel methods for the construction of Π-IMs and Π-PMs via pos-

sibilistic descriptions of a statistical model S. The origins of this approach may be

found in [HoseHanss21a, HoseHanss21b, HoseHanss21c]. Alternative methods have been

described by Martin et al. [Martin15, Martin18, CahoonMartin19, CahoonMartin21]

4.3.1 Parametric Inference

In the following, some prototypes for Π-IMs are discussed.

Suppose a parameter-dependent IP-description distribution πQ̃|θ : Q → [0, 1] of PQ̃|θ
is available, i.e., PQ̃|θ  πQ̃|θ for all θ ∈ Θ. Then πQ̃|θ is said to be a parameter-

dependent (possibilistic) description of S, of PQ̃|θ or of Q̃.

If θ∗ were known, then πQ̃|θ∗ would constitute a consistent possibilistic description of Q̃.

Yet, the actual parameter is unknown, and instead Q̃ = q is observed, where Q̃ ∼ PQ̃|θ∗ .
This section discusses what information the parameter-dependent possibilistic description

contains regarding the possible parameter values.

4.3.1.1 The Pivotal Step

What may be learned about θ∗ from the values of πQ̃|θ(q) for the possible parameter

values θ ∈ Θ given an observation Q̃ = q?
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To answer this question, a Π-IM γθ̂|Q̃ based on the parameter-dependent possibilistic

description is introduced: Under the so-called Pivotal Step its elementary confidence

distributions are given by

γθ̂|q(θ) = πQ̃|θ(q) (4.27)

for all θ ∈ Θ and all q ∈ Q. This simple shift of indices and arguments is the fundamental

technique that enables possibilistic inference with a close resemblance to the construction of

likelihood functions from a probability mass/density function. Appreciating that one of the

simplest descriptions of PQ̃|θ is, e.g., given by the Cumulative P-Π-transform πQ̃|θ = FQ̃|θ,
it could also be argued that it constitutes a likelihood concept in a generalized cumulative

space—instead of the mass/density space.

Since, by construction, these confidence distributions—and, hence, the corresponding upper

and lower confidence measures, too—depend on the statistical model and the observations

only, the Pivotal Step, indeed, produces a Π-IM. Moreover, it yields valuable information

for hypotheses about θ∗, for it adheres to the core principles of Π-IMs, which will be

demonstrated in the following.

The following proposition may be summarized by saying that consistency implies validity

under the Pivotal Step.

Proposition 42. The Pivotal Step in Eq. (4.27) yields a valid Π-IM γθ̂|Q̃ if and only

if PQ̃|θ  πQ̃|θ for all θ ∈ Θ.

Proof. The proposition follows immediately by verifying that, under the respective assump-

tions, PQ̃|θ({q ∈ Q : γθ̂|q(θ) ≤ α}) = PQ̃|θ({q ∈ Q : πQ̃|θ(q) ≤ α}) ≤ α for all α ∈ [0, 1]

and all θ ∈ Θ, where the inequality follows from the consistency of πQ̃|θ and PQ̃|θ or the
validity of γθ̂|Q̃.

Additionally, more specific parameter-dependent descriptions also imply element-wise more

efficient Π-IMs.

Proposition 43. Let π
(1)

Q̃|θ and π
(2)

Q̃|θ be two parameter-dependent descriptions of S with the

corresponding Π-IMs γ
(1)

θ̂|Q̃ and γ
(2)

θ̂|Q̃ obtained in the Pivotal Step in Eq. (4.27). Then, γ
(1)

θ̂|Q̃
is element-wise more efficient than γ

(2)

θ̂|Q̃ if and only if π
(1)

Q̃|θ  π
(2)

Q̃|θ for all θ ∈ Θ.

Proof. The proposition follows immediately by verifying that, under the given assumptions,

PQ̃|θ({q ∈ Q : γ
(1)

θ̂|q (θ) ≤ α}) = PQ̃|θ({q ∈ Q : π
(1)

Q̃|θ(q) ≤ α})

≥ PQ̃|θ({q ∈ Q : π
(2)

Q̃|θ(q) ≤ α}) = PQ̃|θ({q ∈ Q : γ
(2)

θ̂|q (θ) ≤ α})

for all α ∈ [0, 1] and all θ ∈ Θ, where the inequality follows from the specificity or the

efficiency relation.
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Regarding the likelihood conformity of the obtained Π-IM, general results may not be

given.

The Reverse Pivotal Step The ‘if and only if’ in Propositions 42 and 43 suggests

that, given a Π-IM γθ̂|Q̃ of some statistical model PQ̃|θ, it is also possible to obtain a

parameter-dependent description πQ̃|θ thereof under a Reverse Pivotal Step by defining

πQ̃|θ(q) = γθ̂|q(θ) (4.28)

for all θ ∈ Θ and all q ∈ Q, which reads exactly like the Pivotal Step in Eq. (4.27). By the

above-mentioned propositions, the obtained descriptions πQ̃|θ are, e.g., consistent with PQ̃|θ
for all θ ∈ Θ if the Π-IM γθ̂|Q̃ is valid, and they retain their efficiency properties in the

form of specificity.

4.3.1.2 Probability-to-Confidence Transforms

The IP-Π-transform, which embodies the principles of quantitative possibility theory,

generally produces consistent and maximally specific IP-description distributions with

respect to some plausibility order. Therefore, it is justified to investigate the parameter-

dependent descriptions of S that may be obtained by the IP-Π-transform because these

properties directly translate to the validity and efficiency of the corresponding Π-IMs

resulting from the subsequent application of the Pivotal Step. Moreover, this also allows to

choose the remaining degree of freedom in the IP-Π-transform, the elementary plausibility

function, based on the likelihood function.

Employing the IP-Π-transform, a statistical model S can be converted into an IP-

description distribution T [S, ρQ̃] under some plausibility distribution ρQ̃ in order to

obtain a possibilistic description of S. As this would both marginalize the statistical

model, i.e. the parameter dependency, and entirely neglect the available data Q̃ = q

and the information they contain, it would certainly miss the point of statistical infer-

ence; but, considering the advantageous properties of the Pivotal Step, it is expedient

to consider the parameter-dependent possibilistic description πQ̃|θ : Q → [0, 1] of Q̃

obtained via the P-Π-transform of PQ̃|θ under some parameter-dependent plausibility

distribution ρQ̃|θ : Q → [0, 1]. The corresponding expression reads

πQ̃|θ(q) = PQ̃|θ
(
{ξ ∈ Q : ρQ̃|θ(ξ) ≤ ρQ̃|θ(q)}

)
(4.29)

for q ∈ Q and θ ∈ Θ. This may be thought of as an intermediary result of the IP-Π-trans-

form of S, for it is easily verified that the disjunction

πQ̃(q) = sup
θ∈Θ

πQ̃|θ(q) (4.30)
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provides a possibilistic description of P = S, where the parameter dependency has been

marginalized. Nevertheless, πQ̃|θ still contains all the relevant information.

Inserting Eq. (4.29) into Eq. (4.27), one obtains the Probability-to-Confidence Transform (P-

Γ-transform) which reads

γθ̂|q(θ) = PQ̃|θ
(
{ξ ∈ Q : ρQ̃|θ(ξ) ≤ ρQ̃|θ(q)}

)
(4.31)

for all q ∈ Q and all θ ∈ Θ.

Under Propositions 11 and 42, the Π-IM obtained by the P-Γ-transform is clearly valid;

and, under Propositions 13 and 43, it is element-wise more efficient than any other valid

Π-IM γ′
θ̂|Q̃ produced under the Pivotal Step from a parameter-dependent possibilistic

description π′
Q̃|θ that is consistent with PQ̃|θ and plausibility-conform to ρQ̃|θ for all θ ∈ Θ,

respectively. Especially the latter property is quite technical and intangible; therefore, it

is paraphrased by the following result.

Proposition 44. The Π-IM γθ̂|Q̃ obtained by the P-Γ-transform of PQ̃|θ under a parameter-

dependent elementary plausibility function ρQ̃|θ is maximally efficient if the imprecise

variable Ṽ = ρQ̃|θ(Q̃) has a continuous CPF FṼ |θ for all θ ∈ Θ.

Proof. Let θ ∈ Θ and let α ∈ [0, 1]. Since Q̃ ∼ PQ̃|θ, the P-Π-transform of PQ̃|θ reads

πQ̃|θ(q) = PQ̃|θ
(
{q′ ∈ Q : ρQ̃|θ(q

′) ≤ ρQ̃|θ(q)}
)
= FṼ |θ

(
ρQ̃|θ(q)

)
for all q ∈ Q. The proposition follows directly from the Probability Integral Transform

of Ṽ . More precisely, it is easily verified that

α = PṼ |θ
({
v ∈ V : FṼ |θ(v) ≤ α

})
= PQ̃|θ

({
q ∈ Q : FṼ |θ

(
ρQ̃|θ(q)

)
≤ α

})
= PQ̃|θ

({
q ∈ Q : πQ̃|θ(q) ≤ α

})
= PQ̃|θ

({
q ∈ Q : γθ̂|q(θ) ≤ α

})
.

The elementary p-values γθ̂|Q̃(θ) are uniformly distributed for all θ ∈ Θ, which indicates

maximal efficiency.

The required continuity of FṼ |θ immediately implies that Π-IMs of discrete statistical

models are usually not maximally specific, which can, e.g., be observed in Ex. 8. However,

even for discrete distributions, the Π-IM obtained by the P-Γ-transform is certainly valid

and often ‘as efficient as possible’.

The P-Γ-transform constitutes a simple prototype for a family of Π-IMs, and—depending

on the choice of the parameter-dependent plausibility distribution of Q̃—several special

cases can be derived.
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Cumulative Probability-to-Confidence Transforms If Q̃ is an R-valued observa-

tion, then the (Complementary) Cumulative P-Π-transform in connection with the Pivotal

Step yield the (Complementary) Cumulative P-Γ-transform producing the Π-IMs γCPF
θ̂|Q̃

and γCCPF
θ̂|Q̃ , respectively. The obtained confidence distributions

γCPF
θ̂|q (θ) = FQ̃|θ (q) and γCCPF

θ̂|q (θ) = F̄Q̃|θ (q) (4.32)

for all q ∈ Q and all θ ∈ Θ typically correspond to one-sided hypothesis tests and yield

one-sided confidence intervals. The Symmetric Cumulative P-Γ-transform

γSCPF
θ̂|q (θ) = min

(
1, 2 ·min

(
FQ̃|θ (q) , 1− FQ̃|θ (q)

))
(4.33)

for all q ∈ Q and all θ ∈ Θ, which is based on the Symmetric Cumulative P-Π-transform

often yields standard two-sided confidence intervals.

Likelihood-to-Confidence Transforms Based on the likelihood function, the likeli-

hood principle is formulated, whose fundamental importance has been widely recognized

by many statisticians. The original name goes back to Savage [SavageEtAl62, p. 17], who

observes that “[the likelihood function] constitutes the entire evidence of the experiment,

that is, it tells all that the experiment has to tell.” He formalizes this by saying that, if

the same experiment is performed twice yielding Q̃1 = q1 and Q̃2 = q2, respectively, and if

the ratio
�θ̂|q1 (θ)
�θ̂|q2 (θ)

is constant for all θ ∈ Θ, “then each of the two data [. . . ] have exactly the

same thing to say about the [parameter] values” [ibid.]. The immediate conclusion is that,

if a likelihood function is available, a Π-IM accounting for all information in the data can

be built from the likelihood function alone. This conclusion is similar to Axiom (A2) of

Wassermann [Wasserman90] and Axiom (L) of Denœux [Denoeux14]; however, by itself,

it does not necessarily require confidence and likelihood to coincide, which is what Wasser-

mann and Denœux conclude.

Recalling Shafer’s argument “that q renders θ ∈ Θ more plausible than θ′ ∈ Θ when-

ever pθ(q) > pθ′(q).” [Shafer76, p. 238], it is, indeed, a short step from this insight to the

idea that the likelihood function establishes a very sensible plausibility order among the

elements of Θ and using the likelihood function as a parameter-dependent plausibility

distribution

ρQ̃|θ(q) = �θ̂|q(θ) = pθ(q) (4.34)

for all q ∈ Q and all θ ∈ Θ is consistent with intuition. It also constitutes a Reverse Pivotal

Step because, similar to the Pivotal Step, the indices and arguments are simply switched,

and the plausibility order is transferred onto Q. Finally, employing the resulting parameter-

dependent plausibility distribution ρQ̃|θ in Eq. (4.31) constitutes the P-Γ-transform based

on the likelihood, or the Absolute Likelihood-to-Confidence Transform producing the
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Π-IM γ�
θ̂|Q̃ given by the confidence distributions

γ�
θ̂|q(θ) = PQ̃|θ

(
{ξ ∈ Q : �θ̂|ξ(θ) ≤ �θ̂|q(θ)}

)
= PQ̃|θ

(
{ξ ∈ Q : pQ̃|θ(ξ) ≤ pQ̃|θ(q)}

) (4.35)

for all q ∈ Q and all θ ∈ Θ. This is also the Π-IM that is obtained by a parameter-

dependent Optimal P-Π-transform of PQ̃|θ and the subsequent Pivotal Step and has, e.g.,

been employed in Ex. 8 in order to obtain the proposed confidence distribution.

However, this choice is only almost commensurate with the likelihood principle and the

suggestion of Shafer, who proposes to use the relative likelihood function Λθ̂|q as an

elementary plausibility function, which arguably generates more comparability among

likelihood functions, in particular among the induced plausibility orders, for different

pieces of evidence, i.e. for different sets of data. The P-Γ-transform based on the relative

likelihood, the Relative Likelihood-to-Confidence Transform, produces the Π-IM γΛ
θ̂|Q̃ given

by

γΛ
θ̂|q(θ) = PQ̃|θ

(
{ξ ∈ Q : Λθ̂|ξ(θ) ≤ Λθ̂|q(θ)}

)
= PQ̃|θ

({
ξ ∈ Q :

pQ̃|θ(ξ)

supθ′∈Θ pQ̃|θ′(ξ)
≤

pQ̃|θ(q)

supθ′∈Θ pQ̃|θ′(q)

})
(4.36)

for all q ∈ Q and all θ ∈ Θ. By commensurability with the likelihood principle, they can

often be expected to lead to optimal results—not only in terms of validity and efficiency.

In particular, the formulation in Eq. (4.36) is ‘powerful’ in a well-defined manner because,

formally, it corresponds to likelihood ratio (hypothesis) tests, which are uniformly most

powerful, i.e., they minimize the probability of the type II error in Eq. (4.14), under a

variety of assumptions—not least because the likelihood ratio depends on the data only

through a sufficient statistic, if there is one. For instance, according to the well-known

Neyman-Pearson Lemma, the likelihood ratio test is uniformly most powerful for simple

hypotheses, i.e. if the parameter space Θ = {θ1, θ2} consists of two alternatives only. For

general (composite) hypotheses, without restrictions on the parameter space, it is also

uniformly most powerful if the likelihood ratio is monotone with respect to some statistic

of the data [Shao03, Ch. 6.1].

In principle, every confidence distribution produced by a Π-IM bears an apparent resem-

blance to the likelihood function; yet, the two must not be confused. Generally speaking,

whereas the likelihood is precisely the probability Pθ(Q̃ = q) of obtaining the data q given

some parameter value θ ∈ Θ, the likelihood-based confidence of that parameter is the

probability Pθ(ρθ̂|Q̃(θ) ≤ ρθ̂|q(θ)) of obtaining at the most the given likelihood (ratio) of

the data q given some parameter value θ ∈ Θ under the statistical model. The implied

rare events leading to errors of the first type are precisely those that produce lower relative

likelihoods. If the data are, by chance, so misleading that the relative likelihood of the
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actual parameter value is very low, then it should not come as a surprise that a true

hypothesis is rejected.

It must be pointed out that the formulations in Eqs. (4.35) and (4.36) do not necessarily

guarantee likelihood conformity. The produced confidence distribution γθ̂|q are often

plausibility-conform to its likelihood distribution �θ̂|q, but not always.

As a final remark, Balch observes that in his “theory of confidence structures [which

is compatible with IMs], satisfying the likelihood principle is, at most, a secondary

goal” [Balch12, p. 1018]. That is, the likelihood principle is only to be considered once

the more important principles of validity and efficiency have been satisfied—similar to

how the elementary plausibility function resolves the final issue of non-uniqueness for the

IP-Π-transform under the principal constraints of consistency and maximal specificity.

Moreover, the Relative Likelihood-to-Confidence Transform also inherits some rather severe

shortcomings of likelihood ratio tests, especially that they can be tedious to compute.

Since, in particular for vectors of parameters, uniformly most powerful tests often do not

exist, it is therefore expedient to also consider other types of P-Γ-transforms, e.g. based on

other P-Π-transforms. Nevertheless, likelihood-based P-Γ-transforms possess an intuitive

appeal and can be very useful—especially as a starting point for the analysis of a statistical

model.

Example 9: Binomial Π-IM

Consider the problem of estimating the success probability of a Bernoulli experiment

as discussed in Ex. 8, but now the experiment, e.g. the coin toss, is repeated m

times, and the outcomes Q̃1, . . . , Q̃m are observed, where K̃ =
∑m

i=1 Q̃i is the

number of observed successes, which may be anywhere between 0 and m. The

appropriate statistical model for K̃ ∼ PK̃|θ is the binomial sampling model given by

the probability mass function

pK̃|θ(k) =
(
m

k

)
θk(1− θ)m−k

for k = 0, . . . ,m.

This problem is elementary to mathematical statistics and has been addressed count-

less times [ClopperPearson34, Vollset93, AgrestiCoull98, BrownCaiDasGupta01,

Rigollet15, Balch20]. In fact, the ongoing debate regarding its solution is perhaps

the most telling evidence for the non-existence of a universally accepted theory of

statistical inference.

Four Π-IMs producing confidence distributions of the success probability from

an observation K̃ = k are considered, namely those resulting from the Absolute

and Relative Likelihood-to-Confidence Transforms, and from the Cumulative and
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Complementary Cumulative P-Γ-transforms, given by

γ�
θ̂|k(θ) =

∑
i=0,...,m : pK̃|θ(i)≤pK̃|θ(k)

pK̃|θ(i), γΛ
θ̂|k(θ) =

∑
i=0,...,m :

p
K̃|θ(i)

p
K̃| i

m
(i)

≤
p
K̃|θ(k)

p
K̃| k

m
(k)

pK̃|θ(i),

γCPF
θ̂|k (θ) =

k∑
i=0

pK̃|θ(i) and γCCPF
θ̂|k (θ) =

m∑
i=k

pK̃|θ(i)

for θ ∈ [0, 1], respectively. Below, they are depicted for m = 9.

�θ̂|K̃ γ�
θ̂|K̃ γΛ

θ̂|K̃ γCPF
θ̂|K̃ γCCPF

θ̂|K̃
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The Symmetric Cumulative P-Γ-transform corresponds to classical two-sided Pearson-

Clopper confidence intervals for this problem but is generally less expressive than

the likelihood-based P-Γ-transforms and, therefore, not shown.

By Proposition 42, all of these Π-IMs are valid, i.e., the probability of producing an

elementary p-value less than or equal to α ∈ [0, 1] is bounded by

P(γθ̂|K̃(θ) ≤ α) = PK̃|θ∗
(
{k ∈ {0, . . . ,m} : γθ̂|k(θ) ≤ α}

)
=

∑
k : γθ̂|k(θ)≤α

pK̃|θ∗(k) ≤ α

for all θ̂ ∈ [0, 1]. This is also observed in the following figure.
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However, it is also apparent that only the Cumulative P-Γ-transforms, which coincide

with the one-sided Pearson-Clopper confidence intervals, produce maximally efficient
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Π-IMs; the elementary p-values obtained by the suprema of the likelihood-based

P-Γ-transforms are not uniformly distributed because, in this scenario, these P-Γ-

transforms do not fulfill the continuity assumption in Proposition 44. On the other

hand, the Cumulative P-Γ-transform produces a vacuous, i.e. entirely uninformative,

confidence distribution when K̃ = 9, whereas the Complementary Cumulative

P-Γ-transform produces a very expressive confidence distribution—and vice versa

for K̃ = 0.

The above claim that both Cumulative P-Γ-transforms produce one-sided confidence

intervals is supported by this example: The confidence sets obtained by the

Cumulative P-Γ-transform always have a lower bound of zero. The confidence

sets obtained by the Complementary Cumulative P-Γ-transform always have an

upper bound of one. If this one-sidedness is not desirable, the Likelihood-Based

P-Γ-transforms are good alternatives, but a clear ranking in terms of their

expressiveness is not possible. It is also not immediately clear which of the two to

prefer because the produced confidence distributions tend to lie closely together,

but neither is generally more expressive than the other.

The most conspicuous features of the Likelihood-Based P-Γ-transforms are the local

maxima exhibited by the multi-modal confidence distributions that, e.g., imply

non-convex confidence sets, a phenomenon that is called the ‘spikiness problem’

by Balch, who also provides some additional discussion [Balch20] and remedies.

For this thesis, this peculiarity does not pose a serious issue, but, depending on

how the confidence distributions are to be used later, this non-convexity may

be disadvantageous for some implementations of membership computations, see

Chapter 5.

Finally, it is evident, e.g., from the ‘spikes’, that most of the resulting confidence

distributions do not achieve likelihood conformity. This property seems to be

especially challenging to achieve in discrete statistical models.

In conclusion, all of these Π-IMs have certain (dis-)advantages, and a general recom-

mendation which one to prefer cannot be given. Their respective appropriateness

depends on the given circumstances.

4.3.1.3 Extending Possibilities to Confidence

The following Possibilistic Inference Principle first described by Hose and

Hanss [HoseHanss21b, HoseHanss21c] provides a method of statistical inference that is

perhaps most useful to practitioners. It allows deriving confidence distributions for a large

class of (imprecisely stated) statistical models and is related to statistical inference based

on pivotal quantities.
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Especially in larger statistical models, it is often the case that Q̃ may be connected

to a V-valued imprecise variable Ṽ , a pivotal quantity with a known IP-description

distribution πṼ that is independent of θ ∈ Θ, e.g. a superuniform variable, via an implicit

relationship Ξ = Ξθ defined as in Section 3.2, which contains the entire parameter

dependency of the statistical model. That is, the corresponding statistical model is

described by

0 = Ξθ(Ṽ , Q̃) (4.37)

for θ ∈ Θ and Ṽ ∼ πṼ . This specification allows to compute a parameter-dependent

possibilistic description πQ̃|θ of Q̃ via the Implicit Extension Principle—or via its explicit

and inverse variants—ultimately specifying a Π-IM γθ̂|Q̃ that produces the confidence

distributions

γθ̂|q(θ) = πQ̃|θ(q) = sup
v∈V : 0=Ξθ(v,q)

πṼ (v) (4.38)

for all θ ∈ Θ and all q ∈ Q under the Pivotal Step. This expression, allowing to compute

confidence distributions by the extension of description distributions, is, arguably, more in

line with the fiducial approach to statistical inference and corresponds to the a-, p- and

c-step of Martin and Liu [MartinLiu15].

This technique can also be applied when a precise probability distribution of the pivotal

quantity Ṽ is available, which can then be described possibilistically under any of the

available P-Π-transforms.

4.3.2 Reasoning with Confidence

Often, obtaining a confidence distribution of some set of parameters will only be an

intermediate step in solving a larger problem.

For instance, the unknown parameter θ often corresponds to some of the system’s properties

when analyzing a system. Having found a confidence distribution thereof by the successful

application of a Π-IM, it could then be of interest to compute other features δ of this

system that can be computed from these properties. Moreover, these features might also

depend on other system properties θ′, of which confidence distributions might have been

obtained in a separate experiment and which may or may not overlap with θ.

Some fundamental tools are needed to compute such features, namely the extension of

confidence distributions and their combination and updating.

4.3.2.1 Confidence Extension

In the following, assume that a Π-IM γθ̂|Q̃ depending on the Q-valued observation Q̃ is

available, and that—similarly to Eq. (3.20)—a feature δ ∈ D in the feature space D ⊆ RDD ,
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depends on θ ∈ Θ via the implicit relationship

0 = Ξ(θ, δ), (4.39)

where Ξ : Θ× D → RD, and 0 may be a vector of zeros.

For notational convenience, this feature δ = δ̂(PQ̃|θ) is also taken to be the output of the

feature function δ̂ : P(Q,B(Q)) → D.

The fundamental question in this section is how γθ̂|Q̃ may be extended onto the feature

space D in order to assess hypotheses δ∗ ∈ K about δ∗ = δ̂(PQ̃) for some K ∈ B(D).

Indeed, the given information may be used to define a feature Π-IM γδ̂|Q̃, which is given by

γδ̂|q(δ) = sup
θ∈Θ : 0=Ξ(θ,δ)

γθ̂|q(θ) (4.40)

for all δ ∈ D and all q ∈ Q.

Defining a Π-IM of a feature in this manner requires some elaboration of how to read

the expression γδ̂|Q̃. In particular, this notation does not imply that Q̃ be distributed

according to PQ̃|δ, which one might be tempted to assume since this is how one could

read γθ̂|Q̃. On the contrary, Q̃ ∼ PQ̃|θ is still implied in this notation, and the subscript δ̂

does not make any statements about the distribution of Q̃, except that θ and δ are related

via Eq. (4.39); it simply denotes the parameter/feature that the Π-IM belongs to.

For instance, expressed in terms of Eq. (4.9), validity for the Π-IM γδ̂|Q̃ reads as

PQ̃|θ
(
{q ∈ Q : γδ̂|q(δ) ≤ α}

)
≤ α (4.41)

for all α ∈ [0, 1], and for all θ ∈ Θ and δ ∈ D satisfying Eq. (4.39). Likewise, γδ̂|Q̃ is most

efficient if the outer inequality is an equality.

Finally, the validity of γδ̂|Q̃ is inherited from that of γθ̂|Q̃—similar to how consistency is

preserved under pushforwards.

Proposition 45. If γθ̂|Q̃ is valid, then γδ̂|Q̃ is valid.

Proof. The proof follows immediately from the validity of γθ̂|Q̃ by verifying that

PQ̃|θ({q ∈ Q : γδ̂|q(δ) ≤ α}) = PQ̃|θ({q ∈ Q : sup
θ′∈Θ : 0=Ξ(θ′,δ)

γθ̂|q(θ
′) ≤ α})

≤ PQ̃|θ({q ∈ Q : γθ̂|q(θ) ≤ α}) ≤ α

for all α ∈ [0, 1], and for all θ ∈ Θ and δ ∈ D satisfying Eq. (4.39).

The preservation of efficiency, on the other hand, seems to depend on the regularity of Ξ.

For instance, if γθ̂|Q̃ is maximally efficient and if Ξ(θ, δ) = δ − φ(θ) = 0 describes an
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explicit relationship δ = φ(θ), where φ : Θ → D is a bijective function, it is easy to see

that the inequality in the proof of the above proposition becomes an equality, i.e., maximal

efficiency is preserved.

In an analog manner, one may show that, from (valid) Π-IMs of certain features, one may

also compute (valid) Π-IMs of other features under the Confidence Extension Principle.

Nuisance Parameters Marginalization via the Confidence Extension Principle may be

used to eliminate the dependency of the confidence distribution on nuisance parameters.

For instance, if the Π-IM γθ̂|Q̃ produces confidence distributions of θ = (δ, η) composed of

the parameters of interest δ ∈ D and the nuisance parameters η ∈ E, a Π-IM γδ̂|Q̃ of only

the feature is given by

γδ̂|q(δ) = sup
η∈E

γθ̂|q(δ, η) (4.42)

for all δ ∈ D and all q ∈ Q. The dependency on the nuisance parameter η has been

eliminated.

Example 10: Uniform Π-IM

The following example, in its many variations, enjoys wide popularity in the statistical

literature, refer, e.g., to Morey et al. [MoreyEtAl16] and references therein.43

A submersible of unknown length has malfunctioned and is now floating helplessly

in deep water, unable to ascend on its own. Even worse, it has lost contact with its

support vessel at the surface. In case of such an emergency, the support crew has

been instructed to drop a rescue line to the submersible’s emergency hatch that is

located halfway along its length in order to evacuate the aquanauts inside. The

rescue team does not know the exact position of the submersible, but they can

observe bubbles that form along the submersible’s length, independently, with equal

probability, and float to the surface. The situation is depicted below.

a qN q2 c q1 . . . b

Because time matters and consecutive attempts would take too long, the support

team wants to ensure that the rescue line be as close as possible to the hatch on the
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first try.

The corresponding statistical model reads as follows. The positions q1, . . . , qm of the

observed bubbles are realizations of the m iid variables Q̃1, . . . , Q̃m ∼ U(a, b) follow-
ing a uniform probability distribution depending on the start and end points a, b ∈ R

of the submersible, where a ≤ b. These points constitute the vector of unknown

parameters θ = [a, b]T, and the position of the hatch can be expressed as the

feature c = 1
2
(a + b). The corresponding likelihood-based Π-IM is derived in the

following.

The joint probability distribution of Q̃1, . . . , Q̃m ∼ U(a, b) is given by the probability

density function

pQ̃1,...,Q̃m|a,b(q1, . . . , qm) =

{
1

(b−a)m for a ≤ q1, . . . , qm ≤ b and

0 otherwise

for all a, b ∈ R with a ≤ b. The relative likelihood variable is given by

Ṽ = Λθ̂|Q̃1,...,Q̃m
(a, b) =

(
Q̃(m) − Q̃(1)

b− a

)m

if a ≤ Q̃1, . . . , Q̃m ≤ b, where

Q̃(1) = min
i=1,...,m

Q̃i and Q̃(m) = max
i=1,...,m

Q̃i

are the first and last order statistic of Q̃1, . . . , Q̃m, respectively. A well-known result

states that the difference between the order statistics obtained from standard uniform

variables is beta distributed [DavidNagaraja04], i.e.,
Q̃(m)−Q̃(1)

b−a ∼ beta(m − 1, 2).

Therefore, the CPF of the relative likelihood is given by

FṼ |a,b(v) = P(Ṽ ≤ v) = P

(
Q̃(m) − Q̃(1)

b− a
≤ m

√
v

)
= Fbeta(m−1,1)

(
m
√
v
)

for all v ∈ [0, 1], and the resulting Relative Likelihood-to-Confidence Transform

reads

γΛ
θ̂|q1,...,qm(a, b) =

{
Fbeta(m−1,1)

(
q(m)−q(1)

b−a

)
for a ≤ q1, . . . , qm ≤ b and

0 otherwise.

These confidence distributions can be extended to the marginals δ1 = a and δ2 = b,
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and the feature δ3 = c yielding the marginal/feature confidence distributions

γΛ
δ̂1|q1,...,qm(a) =

{
Fbeta(m−1,1)

(
q(m)−q(1)
q(m)−a

)
for a ≤ q1, . . . , qm and

0 otherwise,

γΛ
δ̂2|q1,...,qm(b) =

{
Fbeta(m−1,1)

(
q(m)−q(1)
b−q(1)

)
for q1, . . . , qm ≤ b and

0 otherwise,

γΛ
δ̂3|q1,...,qm(c) = sup

a,b∈R : c=a+b
2

γΛ
θ̂|q1,...,qm(a, b) = sup

a∈R
γΛ
θ̂|q1,...,qm(a, 2c− a)

= sup
a∈R : a≤q(1) ∧ 2c−a≤q(m)

Fbeta(m−1,1)

(
q(m) − q(1)
2(c− a)

)

=

⎧⎨
⎩ Fbeta(m−1,1)

(
q(m)−q(1)
2(q(m)−c)

)
if c ≤ q(1)+q(m)

2
and

Fbeta(m−1,1)

(
q(m)−q(1)
2(c−q(1))

)
otherwise

after some analysis.

The following figures show the contour lines of the joint confidence dis-

tribution γΛ
θ̂|q1,...,qm (left), and its marginal/feature confidence distribu-

tions γΛ
δ̂1|q1,...,qm , γΛ

δ̂2|q1,...,qm and γΛ
δ̂3|q1,...,qm (right), all obtained after observ-

ing qi =
i−1
m−1

for m = 11.
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γΛ
δ̂1|q1,...,qm

γΛ
δ̂2|q1,...,qm

γΛ
δ̂3|q1,...,qm

Joint Confidence Distribution Marginal/Feature Confidence Distributions

Alternatively, one could have formulated the statistical model of the observa-

tions Q̃1, . . . , Q̃m ∼ U(c− l
2
, c+ l

2
) for the vector of unknown parameters θ = [c, l]T

composed of the hatch position c and the submersible’s length l = b − a. The

confidence distribution of c would then have been obtained by marginalizing over

the nuisance parameter l.

It is also expedient to consider how the confidence distribution γΛ
δ̂3|q1,...,qm gains

expressiveness for increasing numbers of m, assuming that the first- and last-order

statistics remain at q(1) = 0 and q(m) = 1, respectively, see below, where the upper
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and lower limits of the corresponding confidence intervals are depicted as a function

of m.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

m

c

α = 1.0
α = 0.9
α = 0.8
α = 0.7
α = 0.6
α = 0.5
α = 0.4
α = 0.3
α = 0.2
α = 0.1

Confidence Interval Evolution

Depending on the desired level of upper or lower confidence and the allowed width

r(α,m) =

⎛
⎝ sup
c∈R : γΛ

δ̂3|q1,...,qm
(c)>α

c

⎞
⎠−

(
inf

c∈R : γΛ
δ̂3|q1,...,qm

(c)>α
c

)

of the respective confidence intervals for α ∈ [0, 1] as shown below, one may then

decide for how many bubbles to wait before dispatching the rescue line.

10 20 30 40 50 60 70 80 90 100
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10−1

100

101

m

r(
α
,m

)

α = 0.9
α = 0.8
α = 0.7
α = 0.6
α = 0.5
α = 0.4
α = 0.3
α = 0.2
α = 0.1

Confidence Interval Width r

If, e.g., the rescue team wants to ensure that the position of the hatch is located

in a 90%-confidence interval with a length of no more than 0.1 distance units (red

line), then the team could act after approximately 40 observed bubbles.

43Unfortunately, the scope of this thesis does not permit a detailed address of Morey et al.’s criticism of

confidence procedures, but the framework of Π-IMs, in particular the Likelihood-to-Confidence Transform,

avoids many of the described fallacies.
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4.3.2.2 Confidence Combination

The second tool that is required for reasoning with confidence distributions concerns the

construction of combined confidence distributions from individual ones that have been

produced under different Π-IMs.

Consider, e.g., the case where two (or more) different Π-IMs for the same statistical

model have been derived. Intuitively, it is not a recommendable procedure to see which

confidence distributions they produce and then choose the more expressive one, or their

minimum, because this would not preserve validity [MoreyEtAl16]. A combined Π-IM

must be derived before seeing the data—just like a Bayesian prior must be chosen before

seeing the data.

More generally, suppose that γθ̂1|Q̃1
, . . . , γθ̂m|Q̃m

are m Π-IMs corresponding to the m

statistical models of Q̃1 ∼ PQ̃1|θ1 , . . . , Q̃m ∼ PQ̃m|θm , respectively. The following discussion

is restricted to stochastically independent imprecise observations, but the individual

parameters may coincide, overlap or be interdependent, i.e., θ1 = ϕ1(θ), . . . , θm = ϕm(θ)

are simply features of the ‘overall’ parameter vector θ, of which a combined Π-IM γθ̂|Q̃1,...,Q̃m

for the combined statistical model

(Q̃1, . . . , Q̃m) ∼ PQ̃1,...,Q̃m|θ = CI
(
PQ̃1|θ1 , . . . ,PQ̃m|θm

)
(4.43)

must first be constructed. The procedure to do just this, which is described in the following,

is similar to the procedures described in Sections 2.3.3.2 and 3.5.

In the spirit of a natural extension, the inverse extension of the features θ1, . . . , θm to the

parameter θ under ϕ1, . . . , ϕm, respectively, yields the Π-IMs γθ̂|Q̃i
given by

γθ̂|qi(θ) = γθ̂i|qi (ϕi(θ)) (4.44)

for all qi ∈ Qi, all θ ∈ Θ and all i = 1, . . . ,m; and under the Reverse Pivotal Step,

the corresponding Π-IMs γθ̂1|Q̃1
, . . . , γθ̂m|Q̃m

define the m parameter-dependent descriptive

distributions πQ̃i|θ given by

πQ̃i|θ(qi) = γθ̂|qi(θ) = γθ̂i|qi(ϕi(θ)). (4.45)

From these, it is possible to derive a combined parameter-dependent possibilistic de-

scription πQ̃1,...,Q̃m|θ. More precisely, the combination of the above Π-IMs follows directly

from the construction of joint IP-description distributions under the strong independence

assumption as discussed in Section 3.5.4. If Q̃1, . . . , Q̃m are assumed to be stochastically

independent, then the application of the SI-Π-copula J SI is appropriate and yields

πQ̃1,...,Q̃m|θ(q1, . . . , qm) = J SI
(
πQ̃1|θ(q1), . . . , πQ̃m|θ(qm)

)
(4.46)

for all θ ∈ Θ and all q1 ∈ Q1, . . . , qm ∈ Qm. And under the Pivotal Step, this—again—

defines a combined Π-IM γθ̂|Q̃1,...,Q̃m
via

γθ̂|Q̃1,...,Q̃m
(θ) = πQ̃1,...,Q̃m|θ(q1, . . . , qm) = J SI

(
γθ̂|q1(θ), . . . , γθ̂|qm(θ)

)
(4.47)
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for all θ ∈ Θ and all q1 ∈ Q1, . . . , qm ∈ Qm.

Proposition 46. If γθ̂1|Q̃1
, . . . , γθ̂m|Q̃m

are valid with respect to the corresponding statistical

models PQ̃1|θ1 , . . . ,PQ̃m|θm, then γθ̂|Q̃1,...,Q̃m
is valid with respect to PQ̃1,...,Q̃m|θ.

Proof. By Proposition 45, the Π-IMs γθ̂|Q̃1
, . . . , γθ̂|Q̃m

are valid with respect to the statisti-

cal models PQ̃1|θ, . . . ,PQ̃m|θ under the given assumptions; but then, by Proposition 42, the

IP-description distributions πQ̃1|θ, . . . , πQ̃m|θ obtained by the Reverse Pivotal Step are also

consistent with PQ̃1|θ, . . . ,PQ̃m|θ for all θ ∈ Θ. And finally, by Proposition 37, πQ̃1,...,Q̃m|θ
obtained under the SI-Π-copula is consistent with PQ̃1,...,Q̃m|θ for all θ ∈ Θ. There-

fore, γθ̂|Q̃1,...,Q̃m
is valid with respect to PQ̃1,...,Q̃m|θ by application of Proposition 42 to the

Pivotal Step in Eq. (4.47).

Furthermore, notice that the SI-Π-copula is non-decreasing in all arguments, and therefore

efficiency, too, is preserved. That is, more efficient individual Π-IMs will always yield more

efficient joint Π-IMs.

In summary, the SI-Π-copula is not only applicable for the construction of joint IP-

description distributions under the assumption of strong independence but also for the

construction of combined confidence distributions under the assumption of stochastic

independence of the data, and the preservation of consistency for the former immediately

implies the preservation of validity for the latter—just like the specificity preservation

implies the preservation of the efficiency order.

This general rule for the combination of combined Π-IMs encompasses several special

setups.

Joint Confidence Most obviously, the combined Π-IM can further be (explicitly) ex-

tended under ϕ : θ �→ (ϕ1(θ), . . . , ϕm(θ)) ultimately yielding the joint Π-IM γθ̂1,...,θ̂m|Q̃1,...,Q̃m

given by
γθ̂1,...,θ̂m|q1,...,qm(θ1, . . . , θm)

= sup
θ∈Θ :ϕ(θ)=(θ1,...,θm)

J SI
(
γθ̂|q1 (ϕ1(θ)) , . . . , γθ̂|qm (ϕm(θ))

)
= J SI

(
γθ̂1|q1(θ1), . . . , γθ̂m|qm(θm)

) (4.48)

for all θ1 ∈ Θ1, . . . , θm ∈ Θm and all q1 ∈ Q1, . . . , qm ∈ Qm. In this manner, a joint

confidence distribution is computed from marginal ones.

Confidence Conjunction If θ = θ1 = . . . = θm, the Π-IM combination rule describes

how to compute the conjunction of the individual Π-IMs γθ̂|Q̃1
, . . . , γθ̂|Q̃m

, i.e. the ‘intersec-

tion’

γθ̂|q1,...,qm(θ1, . . . , θm) = J SI
(
γθ̂|q1(θ), . . . , γθ̂|qm(θ)

)
(4.49)
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of the respective confidence distributions for all θ ∈ Θ and all q1 ∈ Q1, . . . , qm ∈ Qm.

If, e.g., m iid experiments are performed, for which marginal statistical models and the

corresponding (coinciding) Π-IMs γθ̂|Q̃1
= . . . = γθ̂|Q̃m

are available, but the joint statistical

model is not available or difficult to evaluate, then one may simply employ Eq. (4.49) in

order to construct the joint Π-IM instead.

Confidence Updating Similar to the conjunction of confidence, the combination of Π-

IMs also provides a simple way of recursively ‘updating’ a confidence distribution γθ̂|q1,...,qm−1

depending on ‘old’ data Q̃1 = q1, . . . , Q̃m−1 = qm−1 once ‘new’ data Q̃m = qm become

available, resulting in

γθ̂|q1,...,qm(θ1, . . . , θm) = J SI
(
γθ̂|q1,...,qm−1

(θ), γθ̂|qm(θ)
)

(4.50)

for all θ ∈ Θ and all q1 ∈ Q1, . . . , qm ∈ Qm. This updating technique shall prove useful in

the remainder of this thesis, in particular in Chapter 6.

Naturally, one may also construct combined Π-IMs from other strong-independence Π-

copulae, e.g. for the maximum- and the product-based ones. Very curiously, the application

of the latter leads to the well-known formula for the combination of independent p-values

described by Fisher and refined by Jost as explained in Section 3.5.4. Otherwise, if

the independence of the data cannot be guaranteed, then the UI-Π-copula is applicable

and yields Bonferroni’s rule for the combination of p-values without any dependency

assumptions [CramerKamps20].

4.3.3 Predictive Inference

This section shows a simple method of constructing Π-PMs based on possibilistic IP

descriptions and Π-IMs.

4.3.3.1 The Semi-Pivotal Step

A simple method of finding a perceptive Π-PM κṼ |Q̃ of Ṽ given Q̃ is finding a possibilistic

description πṼ ,Q̃ of the statistical model S in combination with the Semi-Pivotal Step

producing the prediction distributions given by

κṼ |q(v) = πṼ ,Q̃(v, q) (4.51)

for all v ∈ V and all q ∈ Q because, then, the perceptiveness in Eq. (4.23) follows directly

from the consistency PṼ ,Q̃|θ  πṼ ,Q̃ for all θ ∈ Θ.

The possibilistic description πṼ ,Q̃ may stem from the disjunction of the parameter-

dependent descriptions πṼ ,Q̃|θ, i.e.

πṼ ,Q̃(v, q) = sup
θ∈Θ

πṼ ,Q̃|θ(v, q), (4.52)
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for all v ∈ V and all q ∈ Q. Moreover, the joint distribution πṼ ,Q̃|θ can be constructed

from two (independently derived) marginal possibilistic descriptions πṼ |θ and πQ̃|θ of Ṽ
and Q̃, respectively, i.e. via

πṼ ,Q̃|θ(v, q) = J
(
πṼ |θ(v), πQ̃|θ(q)

)
(4.53)

for all θ ∈ Θ and an appropriate Π-copula J . Usually, if Ṽ and Q̃ are assumed to

be independent, J = J SI is an appropriate choice. However, if either of the involved

elementary possibility functions is vacuous, then—by Proposition 36—one may also

choose J = J NI yielding more specific results.

Ultimately, this yields the Possibility-to-Prediction Transform given by

κṼ |q(v) = sup
θ∈Θ

J
(
πṼ |θ(v), πQ̃|θ(q)

)
(4.54)

for all v ∈ V and all q ∈ Q.

4.3.3.2 From Confidence to Predictions

The Possibility-to-Prediction Transform in Eq. (4.54) implies that—under the Reverse

Pivotal Step—the confidence distributions obtained from a valid Π-IM γθ̂|Q̃ may be used

for the construction of a perceptive Π-PM κṼ |Q̃ producing the prediction distributions

κṼ |q(v) = sup
θ∈Θ

J
(
πṼ |θ(v), γθ̂|q(θ)

)
(4.55)

for all v ∈ V and all q ∈ Q.

In conclusion, it is straightforward to predict future realizations of the observed variable Ṽ

by Eq. (4.55) if a valid Π-IM of θ and a parameter-dependent description of Ṽ are available.

A general procedure for constructing such Π-PMs is illustrated by the following example.

Example 11: Exponential Π-PM

Suppose that, e.g., the overall reliability of a batch of identically constructed system

components is to be evaluated. For this purpose, m = 5 components are selected

at random from this batch, they are subjected to an endurance test, and their life

spans are documented. Assuming that aging processes are negligible for the overall

reliability of the component, it is reasonable to assume that the life spans are m iid

imprecise variables Q̃1, . . . , Q̃m
iid∼ E(θ) following an exponential distribution given

by the probability density function

pQ̃i|θ(qi) =
1

θ
exp

(
−qi
θ

)
with the unknown mean θ > 0 for all qi ≥ 0 and i = 1, . . . ,m.

The confidence distribution γΛ
θ̂|q1,...,qm obtained by the Relative Likelihood-to-
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Confidence Transform after observing44

q1 = 2.16, q2 = 0.447, q3 = 8.13, q4 = 0.006 and q5 = 0.279

is shown below on the left.

In order to infer how long a sixth component from this batch will endure, a parameter-

dependent predictive distribution of Ṽ = Q̃6 ∼ E(θ) is computed under the Comple-

mentary Cumulative P-Π-transform yielding

πṼ |θ(v) = exp
(
−v
θ

)
for all v ≥ 0, which also coincides with the Optimal P-Π-transform. Finally,

evaluating Eq. (4.55) under the assumption of independence produces the prediction

distribution κṼ |q1,...,q5 shown below on the right.
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Regarding the interpretation of κṼ |q1,...,q5 , much has been said already. It is, e.g.,

clear that for Ṽ to be greater than, e.g. 60, some rare event with less than 1%

probability would have to be in the process of ocurring—it has not ocurred already

because Ṽ = v has not yet been observed—sinceK Ṽ |q ((60,+∞)) < 0.01. Conversely,

it is entirely plausible that Ṽ ≤ 10 because K Ṽ |q ([0, 10]) = 1, but it is in no way

guaranteed since K Ṽ |q ([0, 10]) < 0.24, i.e., the a-priori probability that Q̃ = q

and Ṽ ∈ [0, 10] is less than 24%.

Being based on Π-copulae, a certain degree of conservatism, i.e. a loss of efficiency compared

to other approaches, such as [MartinLingham16], is to be expected.

44These data points correspond to problem #5 of Ferson’s exemplar problems for risk assessments

from sparse information available under https://sites.google.com/site/epistemicunc/exemplar-

problems (accessed September 7, 2021).
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4.3.4 Reasoning with Predictions

Finally, it is straightforward to show that, due to their very similar nature, reasoning with

prediction distributions produced by perceptive Π-PMs, i.e. extending and/or combining

them, is similar to reasoning with confidence distributions produced by valid Π-IMs.

Therefore, the discussion Section 4.3.2 need not be repeated for Π-PMs and only the main

results are stated.

The extension of perceptive Π-PMs to other Π-PMs is treated in the following proposition.

Proposition 47. Let κṼ |Q̃ be a perceptive Π-PM of the imprecise variable Ṽ given the

observation Q̃, and let the T-valued imprecise variable T̃ be connected to Ṽ via the implicit

relationship 0 = Ξ(T̃ , Ṽ ). Then, the Π-PM κT̃ |Q̃ that produces the corresponding prediction

distributions κT̃ |q : T → [0, 1], which are computed by extending κṼ |q via

κT̃ |q(t) = sup
v∈V : 0=Ξ(t,v)

κṼ |q(v) (4.56)

for all q ∈ Q and all t ∈ T, is a perceptive Π-PM of T̃ given Q̃.

Proof. Similar to the discussion in Section 3.2.2, the statistical model is the set of all

pushforward probability measures S = {PT̃ ,Ṽ ,Q̃|θ : Pθ ∈ S0} under T̃ , Ṽ and Q̃ from

the underlying statistical model S0 = {Pθ ∈ P(Ω,Σ) : θ ∈ Θ} on (Ω,Σ). Additionally,

the imprecise variables T̃ , and Ṽ satisfy the implicit relationship 0 = Ξ(T̃ (ω), Ṽ (ω)) for

all ω ∈ Ω. The proposition follows by verifying that, under the perceptiveness of κṼ |Q̃,

PT̃ ,Q̃|θ
({

(t, q) ∈ T×Q : κT̃ |q (t) ≤ α
})

= P|θ
({
ω ∈ Ω : κT̃ |Q̃(ω)

(
T̃ (ω)

)
≤ α

})
= P|θ

({
ω ∈ Ω : supv∈V : 0=Ξ(T̃ (ω),v) κṼ |Q̃(ω) (v) ≤ α

})
≤ P|θ

({
ω ∈ Ω : κṼ |Q̃(ω)

(
Ṽ (ω)

)
≤ α

})
= PṼ ,Q̃|θ

({
(v, q) ∈ V×Q : κṼ |q (v) ≤ α

})
≤ α

for all θ ∈ Θ and all α ∈ [0, 1].

Of course, this also allows, e.g., for a marginalization of ‘nuisance’ variables.

The decomposition of statistical inference into smaller subproblems and the subsequent

combination of the obtained Π-PMs is enabled by the following proposition.

Proposition 48. Let κ
(1)

Ṽ |Q̃1
and κ

(2)

Ṽ |Q̃2
be two perceptive Π-PMs of the imprecise variable Ṽ

given the observations Q̃1 and Q̃2, respectively. Then, the Π-PM κṼ |Q̃1,Q̃2
producing the
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prediction distributions κṼ |q1,q2 : V → [0, 1], which are computed by combining κ
(1)

Ṽ |q1
and κ

(2)

Ṽ |q2 via

κṼ |q1,q2 = J UI
(
κ
(1)

Ṽ |q1 , κ
(2)

Ṽ |q2

)
(4.57)

for all q1 ∈ Q1, all q2 ∈ Q2, and all v ∈ V is a perceptive Π-PM of Ṽ given Q̃1 and Q̃2.

Proof. The proof is similar to those of Propositions 35, 36, 37, and 38. The perceptiveness

of κṼ |Q̃1,Q̃2
follows directly from that of κ

(1)

Ṽ |Q̃1
and κ

(2)

Ṽ |Q̃2
by verifying that

PṼ ,Q̃1,Q̃2|θ
({

(v, q1, q2) ∈ V×Q1 ×Q2 : κṼ |q1,q2(v) ≤ α
})

= PṼ ,Q̃1,Q̃2|θ
({

(v, q1, q2) ∈ V×Q1 ×Q2 : J UI
(
κ
(1)

Ṽ |q1(v), κ
(2)

Ṽ |q2(v)
)
≤ α

})
≤ PṼ ,Q̃1,Q̃2|θ

({
(v, q1, q2) ∈ V×Q1 ×Q2 : 2κ

(1)

Ṽ |q1(v) ≤ α
})

+ PṼ ,Q̃1,Q̃2|θ
({

(v, q1, q2) ∈ V×Q1 ×Q2 : 2κ
(2)

Ṽ |q2(v) ≤ α
})

= PṼ ,Q̃1|θ
({

(v, q1) ∈ V×Q1× : κ
(1)

Ṽ |q1(v) ≤
α

2

})
+ PṼ ,Q̃2|θ

({
(v, q2) ∈ V×Q2 : κ

(2)

Ṽ |q2(v) ≤
α

2

})
≤ α

2
+
α

2
= α

for all θ ∈ Θ and all α ∈ [0, 1].

Without additional assumptions, this result cannot be tightened with a more specific

Π-copula, such as J SI, because, e.g., stochastic independence between (Ṽ , Q̃1) and (Ṽ , Q̃2)

is impossible to have.

4.3.5 Subjectivist, Fiducial and Likelihoodist Aspects

As a final remark, Eq. (4.55) suggests an alternative interpretation of descriptive possibility

distributions by establishing a deeper relationship between description, prediction and

confidence distributions.

If all that is known about the true parameter is θ∗ ∈ T for some T ∈ B(Θ), an appropriate

possibilistic description of Ṽ is given by the disjunction of the parameter-dependent

possibilistic descriptions πṼ |θ, which is just another way to write the IP-Π-transform (2.51),

and reads

πṼ (v) = sup
θ∈T

πṼ |θ(v) = sup
θ∈T

min
(
πṼ |θ(v), 1

)
= sup

θ∈Θ
J NI

(
πṼ |θ(v), IT (θ)

)
= κṼ |∅(v)

(4.58)

for all v ∈ V. The application of the non-interactive Π-copula is warranted by Lemma 20.

This expression corresponds to that of a prediction distribution produced by the Π-PM κṼ |Q̃,
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in the absence of data, written as Q̃ = ∅. That is, the (quasi-)vacuous distribution Q(T ) is

the appropriate way to model the knowledge that θ∗ ∈ T ; and, Eq. (4.55) simply constitutes

a generalization of the disjunction of parameter-dependent possibilistic descriptions.

Put differently, one may say that description distributions are a particular case of prediction

distributions in the absence of data. Conversely, prediction distributions can be viewed as

description distributions conditional on some data/observations.

Therefore, one can argue that possibility theory unifies several ostensibly opposing points

of view. Adopting the frequentist perspective, which is arguably closer to the concept of

IMs, the lack of data Q̃ = ∅ would be modeled via the confidence distribution γθ̂|∅ = IT .
Nevertheless, it might equally well be said in a subjectivist framework that this should

be modeled via a description distribution πθ̃|∅ = IT of an imprecise variable θ̃ ∼ Q(T )

of which only the support T is known. Both result in the same elementary possibility

function and are manipulated in the same way—via the Extension Principle. In this sense,

the border between frequentism and subjectivism blurs in possibility theory.

As mentioned already, the Possibilistic Inference Principle in Eq. (4.38) also appears to be

a fiducial technique since it allows to compute confidence distributions from description

distributions via a simple extension, and the Pivotal Step resembles a possibilistic likelihood

concept. That is, possibilistic inference weakly includes many of the predominant theories

of uncertainty; however, not in the original sense. Moreover, it excludes Bayesianism,

which is not to be confused with subjectivism, e.g., by rejecting Bayes’ rule as a way of

updating beliefs. This rule is replaced by the various conjunction rules.

It is interesting to observe that possibilistic statistics can also be applied to ‘deterministic’

statistical models. For instance, if both πQ̃|θ = PQ̃|θ = D(θ) are deterministic, indicating

that Q̃ = θ for θ ∈ Θ, the Pivotal Step yields

γθ̂|q(θ) = πQ̃|θ(q) =

{
1 if q = θ and

0 otherwise.
(4.59)

That is, γθ̂|q = D(q) is given by the deterministic distribution, too, which is consistent

with intuition and with the arguments in Sections 3.1.3. Moreover, it is consistent with

elementary arithmetical concepts. Suppose, for instance, that Q̃ = Ṽ 2, where Ṽ ∼ D(θ)

for some θ ∈ R and Q̃ = q ≥ 0 is observed. Then, the Possibilistic Inference Principle in

Eq. (4.38) states that a confidence distribution of θ is given by

γθ̂|q(θ) =

{
1 if θ2 = q

0 otherwise.
(4.60)

for all θ ∈ R. This is nothing other than stating that, in this case, both θ = +
√
q

and θ = −√
q are possible.
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Chapter 5

Membership Computations

The purpose of computing is insight, not numbers.

Richard Hamming [Hamming12]

The preceding chapters have, above all else, shown that the calculus of possibility theory

applies to IP-description distributions, confidence distributions, and prediction distributions

alike and is, furthermore, restricted to a few fundamental operations that allow for the

solution of a large variety of problems. The following chapter is intended to showcase some

numerical strategies for the various Transforms described thus far and for the description

of membership functions and their manipulation, most importantly via extension.

The prefix ‘μ’, e.g., in the following definition of the μ-transform, will usually indicate

that functions and classes corresponding to these concepts should also be present in a

numerical implementation.

5.1 Membership Transforms

At the core, the (I)P-Π-Trafo and the P-Γ-transform require one to be able to evaluate the

Membership Transform producing the (parameter-dependent) descriptions πṼ |θ : V → [0, 1]

given by

πṼ |θ(v) = PṼ |θ
({
ξ ∈ V : ρṼ |θ(ξ) ≤ ρṼ |θ(v)

})
(5.1)

under a given parameter-dependent plausibility distribution ρṼ |θ : V → [0, 1] for all v ∈ V

and all θ ∈ Θ. The reasons for its name shall become clear in Section 5.2.

These parameter-dependent description distributions constitute the basic building block

of any possibilistic analysis because, from them, one may derive

IP Description Distributions πṼ : V → [0, 1] resulting from the IP-Π-transform of a
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parametric family of probability distributions PṼ = {PṼ |θ ∈ P(V,B(V)) : θ ∈ Θ}
under the (parameter-independent) plausibility distribution ρṼ |θ = ρṼ for all θ ∈ Θ,

which may be expressed as the disjunction

πṼ (v) = sup
θ∈Θ

πṼ |θ(v) (5.2)

for all v ∈ V,

Confidence Distributions γθ̂|q : Θ → [0, 1], which are produced by a Π-IM γθ̂|Q̃ given

some observation Q̃ = q, and are obtained under the Pivotal Step

γθ̂|q(θ) = πQ̃|θ(q) (5.3)

for all θ ∈ Θ, and

Prediction Distributions κṼ |q : V → [0, 1], which are produced by a Π-PM κṼ |Q̃ under

some observation Q̃ = q, and are, e.g., given by

κṼ |q(v) = sup
θ∈Θ

J
(
πṼ |θ(v), πQ̃|θ(q)

)
(5.4)

for all v ∈ V and an appropriate Π-copula J .

Henceforth, Eq. (5.1) will also be referred to as the μ-transform of PṼ |θ under ρṼ |θ.

The fact that one may potentially need to evaluate the μ-transform for all θ ∈ Θ and/or

all v ∈ V necessitates an efficient evaluation thereof—especially when the implied prob-

abilities are not directly available. In principle, every numerical quadrature rule may

be used to compute the respective probabilities, but especially Monte-Carlo integration

methods naturally lend themselves to this cause due to their straightforward numerical

implementation.

5.1.1 Approximate Membership Transform

Monte-Carlo methods are widely applied in probabilistic analyses [RobertCasella13]. As

Sullivan observes, “[they] are, in essence, an application of the Law of Large Num-

bers” [Sullivan15, p. 178], which states that, if Ṽ1, . . . , Ṽm are m iid imprecise variables fol-

lowing the distribution of the imprecise variable Ṽ ∼ PṼ , and if ϕ : V → R is a measurable

function, such that the expectation EPṼ
[ϕ(Ṽ )] is finite, then the average of ϕ(Ṽ1), . . . , ϕ(Ṽm)

converges to this expectation both in a weak and a strong sense [Jennrich69, Sullivan15].

The basic ‘Vanilla Monte-Carlo’ algorithm for numerical quadrature simply approximates

the expected value of ϕ(Ṽ ) via the average

EPṼ
[ϕ(Ṽ )] ≈ 1

m

m∑
j=1

ϕ(Ṽj). (5.5)
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Applied to the μ-transform in Eq. (5.1), πṼ |θ(v) may be understood as the expected value

of ϕv,θ(Ṽ ) for the function ϕv,θ : V → {0, 1} given by

ϕv,θ(ξ) =

{
1 if ρṼ |θ(ξ) ≤ ρṼ |θ(v) and

0 otherwise,
(5.6)

That is, if a sampling procedure—e.g. inverse transform sampling, rejection sampling,

or a Markov-Chain Monte-Carlo method—generates the m iid realizations Ṽ1, . . . , Ṽm
of Ṽ ∼ PṼ |θ, the Vanilla Monte-Carlo algorithm can be used to approximate πṼ |θ(v) via
the average

IMC
m (v, θ) =

1

m

m∑
j=1

ϕv,θ(Ṽj) (5.7)

for all θ ∈ Θ and all v ∈ V, i.e. via the empirical frequency of realizations producing a

lower plausibility than v. Being bounded, the {0, 1}-valued imprecise variable ϕv,θ(Ṽ )

certainly has a finite expectation EPṼ |θ[ϕv,θ(Ṽ )] ∈ [0, 1], and therefore, the approximation

πṼ |θ(v) = EPṼ |θ
[
ϕv,θ(Ṽ )

]
≈ IMC

m (v, θ) (5.8)

is justified.

The idea for such sample-based constructions of possibility distributions was first described

by Hanselowski et al. [HanselowskiIhrleHanss15], who termed the resulting superlevel

sets percentage sets. A conceptually similar approach had also been proposed earlier

by Masson and Denœux [MassonDenœux06]. While the latter method was intentionally

developed for encoding the sampling (probability) distribution, the former was not initially

developed for a possibilistic IP theory. Only later, it was also discussed with respect to the

proposed framework of quantitative possibility theory by Hose and Hanss [HoseHanss19d],

who reframed it as a method for approximating the P-Π-transform [HoseHanss21c] and

proposed a reliable variant [HoseHanss20].

The need for a reliable variant may be explained via the main impediment of the Approxi-

mate μ-transform, the fact that general reliability guarantees regarding the approximation

of πṼ |θ(v) via IMC
m (v, θ) are difficult to give. Of course, for large sample numbers m,

the estimator IMC
m (v, θ) is guaranteed to converge to πṼ |θ(v), and, from the Chebychev

inequality in Eq. (3.71), it follows that

PṼ1,...,Ṽm|θ
(∣∣∣πṼ |θ(v)− IMC

m (v, θ)
∣∣∣ ≥ t

)
≤ 1

nt2
VarPṼ |θ

[
ϕv,θ(Ṽ )

]
. (5.9)

Yet, it is impossible to determine an appropriate sample size m in order to guarantee

a certain distance t > 0 for a given reliability level γ = 1
nt2

VarPṼ |θ [ϕv,θ(Ṽ )] because the

moments of ϕv,θ(Ṽ ) are generally unknown. A remedy for this shortcoming is addressed

in the following section.
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5.1.2 Reliable Membership Transform

Recalling that an elementary possibility function that is less specific than some other

elementary possibility function also encodes all the information contained in the latter —

the credal set of the former also contains that of the latter—it is sensible to try and find a

reliable upper bound of πṼ |θ(v) in the μ-transform in Eq. (5.1). This idea is pursued in

the following.

The imprecise variable ϕv,θ(Ṽ ) is Bernoulli distributed with the unknown success probabil-

ity πṼ |θ(v). Therefore, the imprecise variable

Q̃ = Q̃(v, θ) =
m∑
j=1

ϕv,θ(Ṽj), (5.10)

counting the number of successes where ρṼ |θ(Ṽj) ≤ ρṼ |θ(v), follows a binomial distribution

and all of the Π-IMs described in Ex. 9 are also appropriate for finding a confidence

distribution of the success probability πṼ |θ(v). since it is of particular interest to find

an upper bound, the Cumulative P-Γ-transform yields the most suitable Π-IM γπ̂Ṽ |θ(v)|Q̃.
Inverting the resulting confidence distribution

γCPF
π̂Ṽ |θ(v)|q =

q∑
k=0

(
m

q

)(
πṼ |θ(v)

)k (
1− πṼ |θ(v)

)m−k
(5.11)

for an observed number of successes Q̃(v, θ) = q via the inverse of the CPF of the beta

distribution at a fixed confidence level γ ∈ [0, 1]—which is then called the reliability

level—gives the upper bound

Irel.m,γ(v, θ) =

{
betainv(γ, q + 1,m− q) if q < m and

1 otherwise,
(5.12)

of the confidence interval corresponding to the confidence level γ. Therefore, the

value Irel.m,γ(v, θ) can be used as a reliable approximation of πṼ |θ(v).

The Π-IM-based derivation of Irel.m,γ(v, θ) guarantees that

PṼ1,...,Ṽm|θ
(
πṼ |θ(v) ≤ Irel.m,γ(v, θ)

)
≥ γ. (5.13)

True to the (Π-)IM framework, this can be interpreted as Irel.m,γ(v, θ) having a guaranteed

a-priori probability γ of not exceeding πṼ |θ(v) with respect to the statistical model

of Ṽ1, . . . , Ṽm. However, this reliability is to be understood with respect to the Monte-Carlo

sampling procedure; in particular, it is not a general probability of overall lower specificity

because it only holds pointwise. Still, future investigations may provide additional insight

into this matter because numerical experiments suggest favorable properties concerning

this global specificity attribute.
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The great advantage of the Reliable μ-transform is that, even for very small sample

sizes (as low as m = 1), the reliability guarantee in Eq. (5.13) always holds, whereas the

Approximate μ-transform requires a potentially large number of samples m� 1 in order

to yield a reliable estimator of πṼ |θ(v). This is especially favorable if the sampling model

of Ṽ is non-trivial and every realization Ṽj requires a significant computational effort by

itself.

The following example highlights the price for this guaranteed reliability, the lower speci-

ficity of the Reliable μ-transform compared to the Approximate μ-transform.

Example 12: Implementation of Gaussian Π-IM

Consider the m iid realizations Q̃1, . . . , Q̃m of an imprecise variable Q̃ ∼ N (θ1, θ2)

following a Gaussian distribution with unknown mean θ1 ∈ R and variance θ2 > 0.

In the following, a very basic Π-IM for θ̂ = (θ̂1, θ̂2) is constructed. In particular,

this Π-IM does not rely on existing results from statistics about suitable pivotal

quantities in such inferential problems [CramerKamps20, pp. 287–289]. Instead,

consider the cost function

J(q1, . . . , qm, θ1, θ2) = (θ1 − m̄(q))2 +
(
θ2 − s̄2(q)

)2
for q1, . . . , qm ∈ R, θ1 ∈ R and θ2 > 0, where m̄(q) = 1

m

∑m
i=1 qi is the sample mean

and s̄2(q) = 1
m

∑m
i=1(m̄(q)− qi)

2 is the (biased) sample variance. One may rescale

this cost function into a normalized plausibility function, e.g. via

ρQ̃1,...,Q̃m|θ1,θ2(q1, . . . , qm) =
1

1 + J(q1, . . . , qm, θ1, θ2)
,

which is consistent with intuition: The cost function J is close to zero if the sample

mean and the sample variance are close to their theoretical counterparts θ1 and θ2,

respectively, yielding a plausibility value close to one. Otherwise, a higher cost value

leads to plausibility values closer to zero. In conclusion, the plausibility resembles

the agreement between the observations q1, . . . , qm and the parameters θ1 and θ2
without any need, e.g., for computing relative or absolute likelihoods.

Applying the μ-transform to the corresponding Π-IM γθ̂1,θ̂2|Q̃1,...,Q̃m
for m = 103

under this plausibility function produces the joint confidence distributions

γθ̂1,θ̂2|q1,...,qm(θ1, θ2) = Im(q1, . . . , qm, θ1, θ2),

which are shown below for the observations45

q1 = 24.544, q2 = 22.516, q3 = 21.081, q4 = 23.483,

q5 = 22.342, q6 = 23.596, q7 = 22.449, q8 = 23.378.
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Evidently, the Reliable μ-transform produces a confidence distribution with much

‘bulkier’ superlevel sets, i.e., it is less specific, than the Approximate μ-transform.
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In conclusion, whenever the μ-transform is invoked below, πṼ |θ(v) may be replaced by the

Approximate μ-transform IMC
m (v, θ) or by the Reliable μ-transform Irel.m,γ(v, θ). Either of the

two μ-transform implementations may also be referred to as Im(v, θ). Since the reliability

guarantee is very valuable and allows one to use arbitrarily low sample numbers m, the

incurred loss of specificity is deemed to be more than acceptable, such that, in the following,

the reliable implementation of the μ-transform is usually applied (typically with a reliability

level of γ = 0.99)—unless indicated otherwise.

5.1.3 Cost Functions as Plausibilities

This section explores the role of cost functions in possibility theory following the idea

of Example 12, more specifically the role of the cost function played therein—penalizing

a mismatch between the sample moments and the theoretical moments implied by the

parameters—and how a plausibility function is defined from this.

In many STEM (science, technology, engineering, mathematics) fields, a (positive) cost

function J : Q× Y → [0,+∞) is usually intended to describe the fit between an observa-

tion q ∈ Q and the output of an explanatory model y : T → Y that is intended to make

predictions y(θ) about Q̃ ∼ PQ̃|θ for θ ∈ T, where Y ⊆ Q. A simple explanatory model is,

e.g., the expectation y(θ) = EPQ̃|θ [Q̃]. Often, this fit

J(q, y) = ||q − y|| (5.14)

45These data points correspond to problem #7 of Ferson’s exemplar problems for risk assessments

from sparse information available under https://sites.google.com/site/epistemicunc/exemplar-

problems (accessed November 8, 2021).
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is defined with respect to some norm || · || of the difference between the observation and

the model output (on Q); popular examples include the quadratic cost functions employed,

e.g., in regression and/or the training of neural networks [HastieTibshiraniFriedman01].

Usually, the minimizer

θmin = argmin
θ∈T

J(q, y(θ)) (5.15)

of such functions is sought, which is then used as an estimator of the ground truth θ∗.

If J(q, y(θ)) is close to zero, θ is said to be in agreement with q. Conversely, very large

values of J(q, y(θ)) imply incompatibility of q and θ. Put differently, J(q, y(θ)) is a

graded fitness value lending plausibility to the combination (q, θ). Continuing the idea of

plausibilities being derived from a cost function, one—but not the only—convenient way

of defining a plausibility distribution ρQ̃|θ : Q → [0, 1] from a cost function is proposed in

Example 12, namely by letting

ρQ̃|θ(q) =
1

1 + J(q, y(θ))
(5.16)

for all q ∈ Q and θ ∈ T, such that the corresponding μ-transform reads

πQ̃|θ(q) = PQ̃|θ
({
ξ ∈ Q : ρQ̃|θ(ξ) ≤ ρQ̃|θ(q)

})
= PQ̃|θ ({ξ ∈ Q : J (q, y(θ)) ≤ J (ξ, y(θ))}) .

(5.17)

By this definition, the elementary confidence γθ̂|q(θ) = πQ̃|θ(q) of θ ∈ T is the a-priori

probability of obtaining a worse cost/fit under Q̃ ∼ PQ̃|θ having observed Q̃ = q.

5.2 Membership Arithmetic

The most widely applicable operation of possibilistic calculus is the extension principle

including the extension of descriptive distributions to descriptive distributions in Eq. (3.27),

the extension of descriptive distributions to confidence distributions in Eq. (4.38), the

extension of confidence distributions to feature distributions in Eq. (4.40), and the extension

of prediction distributions to prediction distributions in Eq. (4.56).

Every elementary possibility function being a membership function,46 the following dis-

cussion will use the latter term to denote (parameter-dependent) elementary plausibility

functions, (parameter-dependent) elementary IP-description functions, elementary confi-

dence functions or elementary prediction functions alike. This general term is warranted

because the formulations of all of the above operations are mathematically equivalent to

the Extension Principle discussed in Section 3.2 and independent of the type of membership

functions that are involved in the formulation.

46This name is owed to the close connection to this very concept in fuzzy set theory, see Section 2.1.2.3.
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5.2.1 Membership Extensions

By a slight abuse of notation, one may, then, consider general extensions of membership

functions μT̊ : T → [0, 1] of T-valued fuzzy variables T̊ , where T ⊆ RDT . These fuzzy

variables T̊ may either be an imprecise variable T̃ : Ω → T or a parameter/feature

function T̂ : P(Ω,B(Ω)) → T, and one can simply write T̊ ∼ μT̊ in order to indicate

that its membership function is given by μT̊ : T → [0, 1]. These membership functions

will typically be available in a closed-form expression or via the μ-transform. A general

formulation of the Extension Principle, then, reads as follows.

Theorem 49. Let T̊ ∼ μT̊ be a T-valued fuzzy variable, and let Z̊ be a second Z-valued

fuzzy variable that is connected to T̊ via the implicit relationship

0 = Ξ(T̊ , Z̊), (5.18)

where Ξ : T×Z → RD and 0 may be a vector of zeros. Then, the corresponding membership

function μZ̊ : Z → [0, 1] of Z̊ is given by

μZ̊(z) = sup
t∈T : 0=Ξ(t,z)

μT̊ (t) (5.19)

for z ∈ Z.

Theorem 49 will, henceforth, simply be referred to as the (Implicit) Membership Extension

Principle, and the proposed numerical strategies for its solution, which are discussed next,

can be applied to all the special cases mentioned above. Furthermore, it forms the basis for

a membership arithmetic applying to descriptive, confidence and prediction distributions

alike.

According to the formulation of the Implicit Membership Extension Principle, a potentially

non-convex and arbitrarily complex optimization problem needs to be solved in order to

compute the membership of every argument z ∈ Z. Except for simple cases, where this may

be accomplished analytically, or well-behaved extension problems [HoseHanss21a], this

may quickly become an infeasible problem in a numerical implementation, and alternative

solution techniques must be found.

As a first remark, reformulating an implicit extension as an explicit or inverse membership

extension may dramatically improve the computability of Eq. (5.19). These formulations

are discussed next.

5.2.1.1 Explicit Membership Extension

The most common formulation of membership arithmetic, the explicit membership extension

is the basic principle for the propagation and marginalization of fuzzy variables, i.e.
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when 0 = Ξ(T̊ , Z̊) describes an explicit dependency Z̊ = φ(T̊ ) for the function φ : T → Z

given T̊ ∼ μT̊ . Under this explicit dependency, Eq. (5.19) reduces to

μZ̊(z) = sup
t∈T : z=φ(t)

μT̊ (t) (5.20)

for z ∈ Z, which is mathematically equivalent to the explicit extension in Eq. (3.30), the

marginalization of descriptive distributions in Eq. (3.36), the marginalization of nuisance

parameters in Eq. (4.42) and the construction of predictive distributions from confidence

and descriptive distributions in Eq. (4.55).

The explicit membership extension is, furthermore, similar to (forward) fuzzy arithmetic,

i.e. to the fuzzy Extension Principle [Zadeh75a, Zadeh75b, Zadeh75c], such that only

minor modifications to available fuzzy arithmetical methods [Hanss02, Hanss05, Walz16,

MäckHanss21] are needed in order to implement explicit possibilistic membership arith-

metic. More precisely, classical fuzzy arithmetic is typically only concerned with the

propagation of fuzzy variables under the non-interactive Π-copula, which ought to be

exchanged for more suitable alternatives in a possibilistic context.

Alternatively, the explicit membership extension can also be formulated on the basis of

the superlevel sets of membership functions, the α-cuts47 of a fuzzy variable, similar to

fuzzy arithmetic [Hanss05].

Proposition 50. The α-cuts of Z̊ = φ(T̊ ) are the images of the corresponding α-cuts

of T̊ under φ, i.e., CαμZ̊ = φ(CαμT̊ ) for all α ∈ [0, 1].

Proof. Let α ∈ [0, 1] and let z ∈ φ(CαμT̊ ), i.e., φ
−1({z}) ∩ CαμT̊ �= ∅. Then, one finds

that μZ̊(z) = supt∈T : z=φ(t) μT̊ (t) = supt∈φ−1({z}) μT̊ (t) > α, and therefore z ∈ CαμZ̊ .
Conversely, let α ∈ [0, 1] and let z ∈ Z such that z /∈ φ(CαμT̊ ). Then, φ

−1({z}) ∩ CαμT̊ = ∅
and μZ̊(z) = supt∈T : z=φ(t) μT̊ (t) = supt∈φ−1({z}) μT̊ (t) ≤ α. That is, z /∈ CαμZ̊ .
In conclusion, z ∈ CαμZ̊ if and only if z ∈ φ(CαμT̊ ).

This formulation of fuzzy arithmetic is often used as a basis for interval arithmetical

solutions of the extension principle [Hanss05].

5.2.1.2 Inverse Membership Extension

If the relationship 0 = Ξ(T̊ , Z̊) is equivalent to an inverse dependency T̊ = ψ(Z̊), also

written as Z̊ = ψ−1(T̊ ), for some function ψ : Z → T given the fuzzy variable T̊ ∼ μT̊ , the

formulation of the inverse membership extension reads

μZ̊(z) = μT̊ (ψ(z)) (5.21)

47See footnote 46.
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for z ∈ Z, which is, e.g., equivalent to the inverse extension in Eq. (3.39). This inversion

is another common operation on membership functions—and perhaps also the simplest

because it amounts to a mere concatenation μZ̊ = μT̊ ◦ψ. Therefore, it does not necessarily
require a particular implementation.

In the following, implicit and explicit extension implementations are discussed in the

famework of membership Graphs, and algorithms are provided where necessary. More

precisely, two fundamentally different paradigms, each with its benefits and drawbacks,

will be investigated: interval- and sample-based implementations.

In order to do so, it is prudent to first discuss a unified strategy of representing membership

functions numerically.

5.2.2 Membership Graphs

In principle, every membership function μT̊ : T → [0, 1] of a fuzzy variable T̊ can be

represented via its graph {(t, μT̊ (t)) : t ∈ T}, which is a precise representation thereof but

will usually possess an infinite number of elements. Such graphs can generally not be

represented exactly on a computer.

A μ-cover K = (S, α) is a tuple consisting of a μ-set S ⊆ T and the corresponding

μ-level α ∈ [0, 1]. In the following, only interval μ-sets will be considered, as well as

their D-dimensional generalizations, box μ-sets, which will be discussed in Section 5.2.3.1.

This μ-set shape can be represented very efficiently on a computer, and it includes singleton

μ-sets, i.e. degenerate interval μ-sets composed of a single point, such as {0} = [0, 0].

A finite set of μ-covers G = {K1, . . . , Km} is said to be a μ-graph on T.

5.2.2.1 Membership Functions

The concept of μ-graphs naturally lends itself to the description of membership functions.

Keeping the convention that the maximum of the empty set is zero, every μ-graph G on T

induces a membership function μG : T → [0, 1], the so-called μ-function of G, given by the

maximum μ-level of all the μ-covers covering a certain point, i.e.

μG(t) = max
(S,α)∈G : t∈S

α (5.22)

for all t ∈ T. This μ-function is locally constant everywhere (except at the boundaries of

the corresponding μ-sets), cf. Fig. 5.1, and it is justified to think of the μ-level of a μ-cover

as a lower bound on the μ-function on the corresponding μ-set.

A crucial aspect of the proposed representation of membership functions via μ-graphs is that

the corresponding possibility and necessity measures, level sets, cumulative distribution

functions, and expectations are very efficiently evaluated.



5.2 Membership Arithmetic 145

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

t

α

(S, α) ∈ G
μG

Figure 5.1: μ-covers of the μ-graph G = {([3, 6], 1
2
), ({4}, 1), ([4, 9], 1
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), ([5, 7], 1), ({6}, 3
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)}

and its induced μ-function μG.

5.2.2.2 Possibilities and Necessities

Computing the possibility ΠG(B) of some event B ∈ B(T) from a μ-graph G on T is

elementary. From the definitions of a possibility measure and a μ-function, the possibility

ΠG(B) = sup
t∈B

μG(t) = sup
t∈B

max
(S,α)∈G : t∈S

α = max
(S,α)∈G :B∩S �=∅

α (5.23)

is simply the maximum μ-level of all μ-sets that have a non-empty intersection with B.

From this observation, one may, furthermore, deduce that the necessity

NG(B) = 1− ΠG(¬B) = 1− max
(S,α)∈G :¬B∩S �=∅

α = min
(S,α)∈G :S �⊆B

1− α (5.24)

of B ∈ B(T) is derived from only the μ-covers in G whose μ-sets are not a subset of B.

5.2.2.3 Level Sets

The superlevel sets of the μ-function μG induced by a μ-graph G on T are

CαμG = {t ∈ T : μG(t) > α} =
⋃

(S,α′)∈G :α′>α

S (5.25)

for α ∈ [0, 1], i.e., the superlevel sets consist of all those μ-sets from the original μ-graph

whose associated μ-levels are strictly greater than α. By complementation of the superlevel

set, one obtains

SαμG = ¬CαμG =
⋂

(S,α′)∈G:α′>α

¬S. (5.26)

for the sublevel sets. However, in contrast to the superlevel sets, this expression may be

difficult to describe numerically when the μ-sets are intervals/boxes or singletons since,

e.g., the intersection of complements of intervals can assume quite arbitrary shapes.
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5.2.2.4 Cumulative Distribution Functions

Consider the one-dimensional48 μ-graph G on T ⊆ R.

The corresponding CΠF F+ : R → [0, 1] of μG, the so-called μ-CΠF, is given by

F+(t) = ΠG({τ ∈ R : τ ≤ t}) = max
(S,α)∈G : {τ∈R:τ≤t}∩S �=∅

α = max
(S,α)∈G : inf S≤t

α (5.27)

for t ∈ T, and the corresponding CNF F− : R → [0, 1], the so-called μ-CNF, is given by

F−(t) = NG({τ ∈ R : τ ≤ t}) = min
(S,α)∈G :S �⊆{τ∈R:τ≤t}

1− α = min
(S,α)∈G : supS>t

1− α. (5.28)

Notice that this also constitutes an implementation of the Possibility-to-P-Box Transform.

Similarly, the complementary μ-CΠF F̄+ : R → [0, 1] and μ-CNF F̄− : R → [0, 1] of G are

given by

F̄+(t) = ΠG({τ ∈ R : τ ≥ t}) = max
(S,α)∈G : supS≥t

α (5.29)

and

F̄−(t) = NG({τ ∈ R : τ ≥ t}) = min
(S,α)∈G : inf S<t

1− α (5.30)

for t ∈ T, respectively.

5.2.2.5 Expectations

Finally, it is also possible to derive the upper and lower expectations of a one-dimensional49

imprecise variable T̃ , whose possibility distribution is available in the form of a μ-

function μGT̃
induced by the μ-graph GT̃ on T ⊆ R.

The upper expectation implied by GT̃ can be computed from the corresponding Choquet

integral in Eq. (3.63) and reads

EΠG
T̃
(T̃ ) =

∫ 1

0

sup CαμG
T̃

dα =

∫ 1

0

sup
(S,α′)∈GT̊ :α′>α

supS dα. (5.31)

For the lower expectation, one can apply the same formalism yielding

ENG
T̃
(T̃ ) =

∫ 1

0

inf CαμG
T̃

dα =

∫ 1

0

inf
(S,α′)∈GT̊ :α′>α

inf S dα. (5.32)

These values can, e.g., be approximated via a Monte-Carlo quadrature.

48This observation is only valid for μ-graphs on a one-dimensional space T ⊆ R. If, instead, a D-

dimensional μ-graph is available, one must first perform the corresponding marginalization in order to

obtain a one-dimensional μ-graph.
49See footnote 48.
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Example 13: Membership Evaluations

Consider the μ-graph GṼ of the [0, 10]-valued imprecise variable Ṽ shown below on

the left.50 The corresponding cumulative μ-CΠFs and μ-CNFs F+, F−, F̄+ and F̄−

are shown below on the right.
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The expected-value bounds implied by this μ-graph are approximated from m = 105

Monte-Carlo samples yielding

ENG
Ṽ
(Ṽ ) ≈ 2.8 and EΠG

Ṽ
(Ṽ ) ≈ 9.6.

5.2.2.6 Combination

Consider a number of membership functions in the form of μ-functions μG1 , . . . , μGm induced

by the μ-graphs G1, . . . ,Gm on T. If these membership functions have been constructed

from different sources of information—i.e. knowledge and/or data—, their disjunctive and

conjunctive combinations must be considered to correctly account for all the available

information in a possibilistic model.

Disjunction The disjunctive combination Gdisj.
1,...,m = G1∨. . .∨Gm ofm μ-graphs G1, . . . ,Gm

on T, more precisely of their μ-functions μG1 , . . . , μGm , is, according to Lemma 16, given

by

μdisj.(t) = max
i=1,...,m

μGi
(t) = max

i=1,...,m
max

(S,α)∈Gi : t∈S
α = max

(S,α)∈⋃m
i=1 Gi : t∈S

α = μGdisj.
1,...,m

(t) (5.33)

for all t ∈ T, where Gdisj.
1,...,m =

⋃m
i=1 Gi. That is, μdisj. = μGdisj.

1,...,m
also has the form of a μ-

function induced by μGdisj.
1,...,m

, the union of the individual μ-graphs, which is straightforward

50The μ-partition GṼ ← fsivia ([μ] , [0, 10], 0.02) has been obtained under the FSIVIA Algorithm 1 to be

discussed in Section 5.2.3.2 for the natural inclusion function of the membership function μ : [0, 10] → [0, 1]

given by μ(v) = 1
1024

(
−3v4 + 56v3 − 336v2 + 768v

)
for v ∈ [0, 10].
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to implement—but also of little practical relevance.

The following implementation of the conjunction is arguably more important.

Conjunction The conjunctive combination Gconj.
1,...,m = G1 ∧ . . . ∧ Gm of m μ-

graphs G1, . . . ,Gm on T, more precisely of their μ-functions μG1 , . . . , μGm , includes the

various credal set conjunctions in Lemmas 18, 20, 21 and 22, and can also be related

to the construction of joint IP-description distributions in Propositions 35, 36 and 37,

and the combination of confidence and prediction distributions in Propositions 46 and 48,

which are all achieved by the application of either the UI-, SI-, or the NI-Π-copula given

in Eqs. (3.78), (3.81) and (3.85). Since the conjunctions under the SI- or the UI-Π-copula

are, essentially, rescaled variants of the conjunction under the NI-Π-copula, the latter shall

primarily be discussed. In a general formulation, it can be expressed as

μconj.(t) = J NI (μG1(t), . . . , μGm(t)) = min
i=1,...,m

μGi
(t)

= min
i=1,...,m

max
(S,α)∈Gi : t∈S

α = max
(S,α)∈Gconj.

1,...,m : t∈S
α = μGconj.

1,...,m
(t)

(5.34)

for all t ∈ T, where

Gconj.
1,...,m =

{(
m⋂
i=1

Si, min
i=1,...,m

αi

)
: (S1, α1) ∈ G1, . . . , (Sm, αm) ∈ Gm

}
. (5.35)

More generally, it holds that

Gconj.
1,...,m =

{(
m⋂
i=1

Si,J (α1, . . . , αm)

)
: (S1, α1) ∈ G1, . . . , (Sm, αm) ∈ Gm

}
(5.36)

for J ∈ {J NI,J UI,J SI}. Similar to the disjunction, the conjunction μconj. = μGconj.
1,...,m

also

has the form of a μ-function induced by Gconj.
1,...,m, which is slightly more complex but still

straightforward to implement.

For the construction of joint IP-description distributions in Propositions 35, 36 and 37, one

can assume that Gi are the vacuous extensions of the μ-graphs G ′
i on Ti for i = 1, . . . ,m,

respectively. More precisely, the vacuous extensions onto T = T1 × . . .× Tm are induced

by the μ-graphs

Gi = {([T1]× . . .× [Ti−1]× Si × [Ti+1]× . . .× [Tm], α) : (Si, α) ∈ G ′
i} (5.37)

and Eq. (5.36) reduces to

Gconj.
1,...,m = {(S1 × . . .× Sm,J (α1, . . . , αm)) : (S1, α1) ∈ G ′

1, . . . , (Sm, αm) ∈ G ′
m} (5.38)

for J ∈ {J NI,J UI,J SI}. That is, Gconj.
1,...,m resembles an extended Cartesian product of the

μ-graphs G ′
1, . . . ,G ′

m, i.e. the Cartesian product of their μ-sets along with an application

of the Π-copula to the corresponding μ-levels.
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A similar discussion can be applied to the various combinations of confidence distributions

under Proposition 46.

In the following, the notation T̊ ∼ GT̊ indicates that the membership function μT̊ of T̊ is

the μ-function μGT̊
.

Next, interval- and sample-based strategies for implementing membership extensions are

discussed.

5.2.3 Interval-Based Extension Methods

The numerical strategies described in this section are fundamentally based on ideas from

interval analysis. The justification for membership arithmetic via interval analysis instead

of more efficient, sample-based implementations is the lack of computational schemes that

can provide rigorous solutions, against which the latter (approximate solutions) can be

validated. The interval-arithmetical methods proposed below can typically only be applied

to smaller academic examples.

5.2.3.1 Interval Analysis

The following discussion commences with a brief introduction of interval analysis that is

essential for understanding the remainder of this thesis. It is heavily based on the book

by Jaulin et al. [JaulinEtAl01], which provides more detailed explanations of the various

concepts employed in this chapter.

Intervals have already been used extensively in the previous chapters, but, for the sake

of having a formal definition, an interval [t] is a connected subset of R. Here, it is also

assumed to be bounded, and the lower and upper bounds of [t] are given by

[t]− = inf [t] and [t]+ = sup [t]. (5.39)

Therefore, one may write [t] = [[t]−, [t]+], as done in the previous chapters. The interval’s

center and radius are given by

[t]c =
[t]+ + [t]−

2
and [t]r =

[t]+ − [t]−

2
, (5.40)

and one may equivalently write [t] = [t]c ± [t]r.

The following discussion applies both to intervals and to D-dimensional boxes, i.e. the

Cartesian products

[t] = [t1]× . . .× [tD] (5.41)

of D intervals, and will usually speak of the latter. Then, the definitions of lower and

upper bound, center and radius are to be understood element-wise and yield vectors. The
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(D-)volume of [t] is given by the Lebesgue measure

λ ([t]) = 2D · [t1]r · . . . · [tD]r. (5.42)

The space of all boxes in T ⊆ RD is written as I(T), and, given any set B ⊆ T, its interval

hull

[t] =

[
inf
t∈B

t1, sup
t∈B

t1

]
× . . .×

[
inf
t∈B

tD, sup
t∈B

tD

]
(5.43)

is the smallest box in I(T) that contains B. Notice that I(T) ⊆ B(T).

One of the simplest methods for determining if the two boxes [t] = [t1] × . . . × [tD]

and [τ ] = [τ1]× . . .× [τD] intersect, i.e. if [t] ∩ [τ ] �= ∅, is to check whether

[ti]
+ ≤ [τi]

− and [τi]
+ ≤ [ti]

− (5.44)

for all i = 1, . . . , D. Subset inclusion [t] ⊆ [τ ] is verified via

[τi]
− ≤ [ti]

− and [ti]
+ ≤ [τi]

+ (5.45)

for all i = 1, . . . , D.

Finally, bisecting a box produces the lower and upper part

[t]l = [t1]× . . .× [timax−1]× [[timax ]−, [timax ]c]× [timax+1]× . . .× [tD] and

[t]u = [t1]× . . .× [timax−1]× [[timax ]c, [timax ]+]× [timax+1]× . . .× [tD],
(5.46)

respectively, where imax = argmaxi=1,...,D[ti]
r is the index of the interval constituent with

maximum radius.

Interval Arithmetic A function f : T → Z, evaluated with the box-valued argument [t]

returns a general set f([t]) that is not necessarily a box. The interval function [f ] : I(Z) →
I(T) is an inclusion function of f if

f([t]) ⊆ [f ]([t]) (5.47)

for all [t] ∈ I(T), i.e. if it is guaranteed to produce a box containing the true image

of [t] under f . Inclusion functions are an important concept in interval analysis and

may exhibit various properties, which shall, however, not be the topic of this discus-

sion;51 however, stated in the language of possibility theory, considering the indicator

functions of f([t]) and [f ]([t]), i.e. their {0, 1}-valued membership functions, the goal

is generally to find an inclusion function that produces a maximally specific indicator

function I[f ]([t]) with If([t])  I[f ]([t]). Clearly, an optimal inclusion function always

achieves [f ]([t]) = [f([t])]; however, it is not always possible to find such functions without

51Refer, e.g., to Jaulin et al. [JaulinEtAl01] and the many references therein.
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undue computational effort. An efficient implementation of interval arithmetic is, e.g.,

described by Herrero et al. [HerreroEtAl12].

The inclusion functions employed in this thesis are primarily natural inclusion functions un-

less indicated otherwise. Natural inclusion functions are among the most basic techniques

for constructing useful inclusion functions. They can be built from virtually all regular

functions f composed of only elementary operations, such as addition, subtraction, multi-

plication, and division, and elementary functions (exp, sin, cos, tan, polynomials and more)

by replacing these with the corresponding interval operations and functions. This approach

to interval arithmetic is often called ‘standard interval arithmetic’ [Hanss05] and often

leads to good convergence properties of the constructed inclusion function [JaulinEtAl01,

Theorem 2.2]. Therefore, it is recommendable in many scenarios—the only impediment

being the ‘problem of repeated variables’ [Hanss05] that may produce unnecessarily conser-

vative inclusion functions. Moreover, it can often be implemented by operator-overloading,

requiring only minimal changes to existing code based on computations with precise

numbers.

Inclusion functions of the membership functions obtained under the μ-transform and of

μ-functions are derived in Appendices A and B.

5.2.3.2 Membership Partitions

A μ-graph P composed of non-overlapping interval/box μ-sets covering all of T is said to

be a μ-partition on T. That is, the interiors of all contained μ-sets are disjoint (but they

may share boundaries), and the union of all μ-sets covers T ⊆ ⋃(S,α)∈P S.

A natural question is how one may obtain a μ-partition from a given membership

function. To this end, suppose an inclusion function [μ] : I(T) → I([0, 1]) of a given

membership function μ : T → [0, 1] is available. Then, the Fuzzy Set Inversion Via

Interval Analysis (FSIVIA) Algorithm 1 that is adapted from Set Inversion Via Inter-

val Analysis (SIVIA) [JaulinEtAl01, Table 3.1] and was first presented by Hose and

Hanss [HoseHanss20] can be used to compute an outer approximation in the form of a

μ-partition.

The gradedness, i.e. the continuity, of the membership function52 enables bisections

according to the membership range and generalizes the bisections based on the simple

indicator function in the classical SIVIA. The consideration of discrete distributions may

require slight modifications to the proposed algorithms.

In its recursive variant, the FSIVIA Algorithm 1 computes the membership range of the

box that is to be evaluated. If this range is small enough, the box and the maximum

52Here, all membership functions are assumed to be continuous, which is deemed more useful for

practitioners.
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Algorithm 1: fsivia

input :Membership Inclusion Function [μ], Box [t], Tolerance εα
output :μ-Partition P

1 [α] ← [μ] ([t]) // membership range in box

2 if [α]r < εα then // termination criterion

3 P ← {([t], [α]+)} // store μ-cover in μ-partition

4 else

5 P ← fsivia
(
[μ], [t]l, εα

)
∪ fsivia ([μ], [t]u, εα) // FSIVIA on bisection

6 end

membership in the range are added as a μ-cover to the μ-partition. Otherwise, the box

is bisected, the FSIVIA algorithm is called on the two resulting (lower and upper) parts,

and the results are joined. This procedure returns a μ-partition that is, above all else,

composed of μ-covers where the original membership function is almost constant on the

corresponding μ-set—and guaranteed to always be lower than the respective μ-level in

order to enable a faithful, i.e. less specific, representation of the original membership

function via the one induced by the resulting μ-partition.

Notice that fsivia only works with bounded input boxes.

In summary, FSIVIA is fundamental to many of the following implementations because it

allows to compute a μ-partition P on T via the initial call

P ← fsivia([μ], [T], εα) (5.48)

for a desired membership resolution εα ∈ [0, 1] from any membership function μ : T → [0, 1]

of which an inclusion function [μ] : I(T) → I([0, 1]) can be found. By construction of

the algorithm, the μ-function of P is guaranteed to be less specific than μ because the

upper bound of the membership range is taken to be the μ-level of the new μ-cover, which

guarantees that the information contained in μ is robustly accounted for by the slightly

less expressive outer approximation μP . For instance, if μ describes a family of imprecise

probabilities, the credal set of μ  μP is a subset of that of μP .

Especially if μ exhibits jumps and discontinuities, it is sensible to consider other termination

criteria, such as a fixed number of maximum bisections or a minimum box volume, to

guarantee a successful termination. It may also be advantageous to require a maximum

box radius that must not be exceeded.

Example 14: FSIVIA of a Triangular Membership Function

Below, the μ-partitions resulting from a call to fsivia on a triangular membership

function μtria. = Δ(0, 1, 4),

P ← fsivia([Δ(0, 1, 4)], [0, 4], εα),
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for various tolerance levels εα can be observed. Therein, the membership inclusion

function is given by the lower bound

[μtria.]−([t]) = min
(
μtria.([t]−), μtria.([t]+)

)
and the upper bound

[μtria.]+([t]) =

{
1 if c ∈ [t]

max
(
μtria.([t]−), μtria.([t]+)

)
otherwise.
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It is evident that εα can be used very efficiently to control the resolution of the result-

ing μ-partition and that the induced μ-function is always less specific than Δ(0, 1, 4).

Considering the inverse membership extension in Eq. (5.21), FSIVIA is directly applicable

if an inclusion function of the concatenation [μT̊ ] ◦ [ψ] : I(Z) → I([0, 1]) of the inclusion

functions of μT̊ and ψ is available.

Example 15: μ Transform via Membership Inversion

Consider two standard Gaussian variables Q̃1, Q̃2 ∼ N (0, 1). In order to find a joint

possibility distribution, it is usually necessary to perform the μ-transform under

some plausibility function as explained above. An arguably simpler technique can
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be derived under the membership inversion.

The imprecise variable

Ṽ = ψ(Q̃1, Q̃2) = Q̃2
1 + Q̃2

2 ∼ χ2(2)

follows a χ2-distribution with two degrees of freedom. Such one-dimensional imprecise

variables can be transformed very efficiently via the various (Complementary/Sym-

metric) Cumulative Probability-to-Possibility Transforms

πCPF
Ṽ

(v) = Fχ2(2)(v),

πCCPF
Ṽ

(v) = 1− Fχ2(2)(v) and

πSCPF
Ṽ

(v) = 2 ·min
(
Fχ2(2)(v), 1− Fχ2(2)(v)

)
,

where Fχ2(2) is the CPF of the χ2-distribution with two degrees of freedom. Since

CPFs are non-decreasing with respect to their argument, a tight inclusion function

thereof can be constructed via[
Fχ2(2)

]−
([v]) = Fχ2(2)([v]

−) and
[
Fχ2(2)

]+
([v]) = Fχ2(2)([v]

+)

for [v] ∈ I([0,∞)) even though an explicit formula of this CPF is not available

and, e.g., a natural inclusion function may not be constructed. From this inclusion

function, (quasi-)natural inclusion functions of πCPF
Ṽ

, πCCPF
Ṽ

, πSCPF
Ṽ

and their

concatenations with [ψ] can be constructed.

Under the membership inversion, the corresponding membership functions of (Q̃1, Q̃2)

are, e.g., induced by the μ-partitions obtained under

PCPF
Q̃1,Q̃2

← fsivia([πCPF
Ṽ

] ◦ [ψ], [−3, 3]× [−3, 3], 0.1),

PCCPF
Q̃1,Q̃2

← fsivia([πCCPF
Ṽ

] ◦ [ψ], [−3, 3]× [−3, 3], 0.1) and

PSCPF
Q̃1,Q̃2

← fsivia([πSCPF
Ṽ

] ◦ [ψ], [−3, 3]× [−3, 3], 0.1),

which are also shown below.
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The rectangles correspond to the μ-sets, and the colors indicate the μ-levels of

the μ-clusters pertaining to the various PQ̃1,Q̃2
. Notice that PCCPF

Q̃1,Q̃2
resembles the

Optimal μ-transform of PQ̃1,Q̃2
.

5.2.3.3 Interval-Based Implicit Extension

In order to implement the general implicit membership extension as given in Eq. (5.19),

let [Ξ] : I(T)× I(Z) → I(RD) be an inclusion function of Ξ, and let [μT̊ ] : I(T)× I([0, 1])

be an inclusion function of μT̊ ; let [t] ∈ I(T) and [z] ∈ I(Z), and define [x] = [Ξ]([t], [z])

and [α] = [μT̊ ]([t]). Then, four cases may be distinguished.

1. If 0 is not an element of [x], then it is impossible that any combination (t, z) ∈ [t]×[z]

achieves Ξ(t, z) = 0, and [t] and [z] may be discarded.

In the following, 0 ∈ [x] is assumed.

2. If both [x] and [α] meet some tolerance constraints—e.g. if their radii are no wider

than ε0 and εα, respectively—then one may add the μ-cover ([z], [α]+) to the μ-

graph PZ̊ . The upper bound [α]+ guarantees that this μ-level is higher than the

membership μT̊ (t) of any t ∈ [t] for which some z ∈ [z] exists such that Ξ(t, z) = 0.

3. If [x] does not meet some tolerance constraint—e.g. if its radius is wider

than ε0—then one may quadrisect [t] × [z] and inspect the combina-

tions ([t]l, [z]l), ([t]l, [z]u), ([t]u, [z]l) and ([t]u, [z]u) individually.

4. If only [α] does not meet some tolerance constraint—e.g. if its radius is wider

than εα—then one may bisect [t] and inspect the combinations ([t]l, [z]) and ([t]u, [z])

individually. Bisecting [z] is not necessary because it does not influence [α].
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The recursive Membership Extension via Interval Analysis (MEVIA) Algorithm 2 is a

generalization of the FSIVIA Algorithm 1, following these deliberations.

Algorithm 2: mevia

input :Membership Inclusion Function [μT̊ ], Dependency Inclusion Function [Ξ],

Input Box [t], Output Box [z], Tolerance εα, Tolerance ε0
output :μ-Graph GZ̊

1 [x] ← [Ξ]([t], [z]) // compute image range of boxes

2 [α] ← [μT̊ ]([t]) // compute membership range in box

3 if 0 /∈ [x] then // case 1: discard

4 GZ̊ ← ∅
5 else if [α]r < εα and [x]r < ε0 then // case 2: store

6 GZ̊ ← {([z], [α]+)}
7 else if [x]r ≥ ε0 then // case 3: quadrisect

8 G1 ← mevia([μ], [Ξ], [t]l, [z]l, εα, ε0)

9 G2 ← mevia([μ], [Ξ], [t]l, [z]u, εα, ε0)

10 G3 ← mevia([μ], [Ξ], [t]u, [z]l, εα, ε0)

11 G4 ← mevia([μ], [Ξ], [t]u, [z]u, εα, ε0)

12 GZ̊ ← G1 ∪ G2 ∪ G3 ∪ G4

13 else // case 4: bisect

14 G1 ← mevia([μ], [Ξ], [t]l, [z]l, εα, ε0)

15 G2 ← mevia([μ], [Ξ], [t]l, [z]u, εα, ε0)

16 GZ̊ ← G1 ∪ G2

17 end

Again, the call

GZ̊ ← mevia ([μ], [Ξ], [T], [Z], εα, ε0) (5.49)

for some tolerance constraints εα ∈ [0, 1] and ε0 > 0 guarantees a robust outer approxi-

mation of μZ̊  μGZ̊
via the μ-function induced by the μ-graph GZ̊ . Of course, additional

termination criteria may be inserted into this algorithm.

Example 16: Membership Extension

Consider the input fuzzy variable T̊ ∼ Δ(0, 1, 2) and the output fuzzy variable Z̊

that is connected to T̊ via the implicit relationship

0 = Ξ
(
T̊ , Z̊

)
=
(
Z̊ + 1

)(
T̊ − 2

)
− exp

(
T̊ − Z̊2

)
.

Notice that this relationship is difficult to invert analytically with respect to either T̊

or Z̊. Still, an outer approximation of μZ̊ can be computed in the form of the μ-
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graph PZ̊ shown below by calling MEVIA via

PZ̊ ← mevia ([Δ(0, 1, 2)] , [Ξ] , [0, 2], [−3,−1], 0.05, 0.05) .
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Notice that, in contrast to the FSIVIA Algorithm 1, the MEVIA Algorithm 2 does not

return a μ-partition but a μ-graph instead. However, a μ-partition can always be obtained

by applying FSIVIA to an inclusion function of the μ-function μGZ̊
, see Appendix B.

Nevertheless, the MEVIA Algorithm 2 is computationally demanding, and, if one can

rewrite an implicit extension as an explicit or inverse extension, this is generally recom-

mendable. For instance the membership inversion under the FSIVIA Algorithm 1 avoids

the additional bisections of [T] under MEVIA and/or first computing a μ-graph of T̊—even

though, under Eq. (5.54), it implies

PT̊ = {([ψ]([z]), α) : ([z], α) ∈ PZ̊} . (5.50)

An efficient interval-based strategy for membership propagations is discussed next.

5.2.3.4 Interval-Based Membership Propagation

As mentioned above, the α-cut arithmetic enabled by Proposition 50 is often considered to

be the single basis for fuzzy/membership arithmetic based on interval arithmetic [Hanss05].

According to this formulation, a fuzzy input variable T̊ must be decomposed into a

finite number of α-cuts (Cα(i)
μT̊

)mi=1 for the corresponding membership levels α(i) ∈ [0, 1]

for i = 1, . . . ,m producing the m input tuples (Cα(i)
μT̊

, α(i))
m
i=1. Finally, the output α-cuts

under φ can be bounded bounded via

Cα(i)
μZ̊

= φ
(
Cα(i)
μT̊

)
⊆ [φ]

([
Cα(i)
μT̊

])
, (5.51)

i.e., the output fuzzy variable Z̊ is numerically approximated via the tu-

ples ([φ]([Cα(i)
μT̊

]), α(i))
m
i=1. Classical fuzzy arithmetic based on interval arithmetic
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only considers fuzzy numbers, i.e. marginal fuzzy variables whose α-cuts are intervals,

which—under the minimum-based Π-copulae—lead to joint input α-cuts in the form of

boxes [Hanss05], but the above propagation rule holds for any input α-cut shape.

The conservatism of this approximation critically depends on the quality of the inclusion

function [φ]—e.g. on its ability to avoid overestimation due to repeated variables—and

on the initial box-shapedness of Cα(i)
μT̊

. This guarantees the robust approximation of the

output α-cuts on the given levels α(i), but it is not trivial to guarantee robustness on the

α-cuts in-between.

Membership arithmetic based on μ-graphs composed of inverval/box μ-sets is an alternative

to α-cut arithmetic, and the membership propagation for fuzzy variables T̊ ∼ GT̊ shall now

be discussed. Of course, the μ-graph GT̊ on T may have, e.g., resulted from FSIVIA or

MEVIA, and, if T̊ = (T̊1, . . . , T̊m) is composed of the marginal variables T̊1 ∼ GT̊1 , . . . , T̊m ∼
GT̊m , then one can obtain the joint μ-graph GT̊ = GT̊1,...,T̊m under the Π-copula J via the

conjunctive combination of their vacuous extensions as described in Section 5.2.2.6, i.e.

GT̊ = {([t]1 × . . .× [t]m,J (α1, . . . , αm)) :

([t]1, α1) ∈ GT̊1 , . . . , ([t]m, αm) ∈ GT̊m
}
.

(5.52)

Given an input fuzzy variable T̊ ∼ GT̊ , the membership function of the output fuzzy

variable Z̊ = φ(T̊ ) on some box [z] ∈ I(Z) is, according to the explicit membership

extension in Eq. (5.20), given by

μZ̊(z) = sup
t∈T : z=φ(t)

μGT̊
(t) = sup

t∈T :z=φ(t)

max
([t],α)∈GT̊ : t∈[t]

α

= max
([t],α)∈GT̊ : z∈φ([t])

α ≤ max
([t],α)∈GT̊ :z∈[φ]([t])

α = max
([z],α)∈GZ̊ :z∈[z]

α = μGZ̊
(z)

(5.53)

for all z ∈ [z]. Therein, the inequality is potentially an equality, depending on the

inclusion function of φ. In any case, the possible loss of specificity generates a robust outer

approximation of the information contained in μZ̊ . More importantly, the expression on

the right-hand side of the inequality can be understood as the μ-function induced by the

μ-graph

GZ̊ = {([φ]([t]), α) : ([t], α) ∈ GT̊} . (5.54)

That is, the μ-graph of Z̊ is computed by taking the μ-covers ([t], α) ∈ GT̊ , propagating
the associated interval/box μ-sets [t] through the inclusion function of φ, and storing the

resulting μ-sets [φ]([t]) along with the original μ-levels α in GZ̊ .

Example 17: Membership Propagation

Consider the propagation of the fuzzy input variable T̊ ∼ PT̊ whose μ-partition,

which is shown below on the left, has been obtained from the Chebychev distribution
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via

PT̊ ← fsivia
(
[M2(1, 1)], [−10, 10], 0.05

)
.

The resulting membership function of the fuzzy output variable

Z̊ = φ(T̊ ) = log(T̊ 2 + 1)

can then be approximated by computing the μ-graph GZ̊ in Eq. (5.54) under φ,

which is shown below on the right.
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In both figures, the corresponding μ-covers, ([t], α) ∈ PT̊ and ([φ]([t]), α) ∈ GZ̊ ,
have the same color in order to trace the propagation procedure. The μ-sets differ,

whereas the μ-levels remain the same. Evidently, the μ-covers stemming from t < 0

do not contribute to the μ-function of GZ̊

Notice that, e.g. in the example above, even though the input may be a μ-partition it

cannot be guaranteed that the output is also a μ-partition. It may very well only be a

μ-graph.

This approach corresponds to classical α-cut arithmetic if the μ-graph GT̊ = {(Cα(i)

μT̊
, α(i))}

is composed of the α-cuts of T̊ . That is, the proposed interval-based propagation method

constitutes a generalization of classical α-cut arithmetic.

On a final note, the marginalization of a μ-graph reduces to a simple elimination of the

respective dimensions i = 1, . . . ,m from the associated μ-sets in Eq. (5.54), e.g. via

PT̊i = {([t]i, α) : ([t], α) ∈ PT̊} . (5.55)

As mentioned above, interval-based membership extension methods are computationally

demanding, restricting their application to smaller problems. Additionally, they require

inclusion functions of the relationships Ξ, φ, and ψ, which usually implies these models

to be ‘white-box’ models that can intrusively be modified in order to apply interval

arithmetic. Their great benefit is the guaranteed outer, i.e. conservative, approximation of
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the information about the model output Z̊.

Next, an alternative, sample-based extension method shall briefly be discussed, which

addresses these drawbacks. In particular, it is non-intrusive, i.e., it can be applied to ‘black-

box’ models; yet, the computed solutions are always inner, i.e. non-robust, approximations.

5.2.4 Sample-Based Extension Methods

Membership propagation based on samples loosely corresponds to Vanilla Monte-Carlo

methods. It is guided by the idea that any membership function can be represented

reasonably well by a sufficiently large number of samples. However,—in contrast to

Monte-Carlo techniques—it is not necessary for the samples’ densities to be representative

of a population because, instead, they are equipped with a membership value—similar

to statistical sample weights. The general idea is to choose these samples such that the

original membership function may be reconstructed from the sample positions and their

respective memberships. The samples should generally be densely distributed in areas

where the approximated membership function has large gradients, discontinuities, etc.,

and more sparsely distributed in areas where it is effectively constant.

This sampling idea can be cast into the framework of μ-graphs.

5.2.4.1 Membership Clusters

A μ-graph K composed of μ-covers containing only singleton μ-sets is said to be a μ-

cluster, and its μ-covers are usually referred to as μ-nodes. For convenience, and if no

ambiguity is possible, such μ-nodes may simply be written as a tuple (t, α) ∈ K for the

singleton t ∈ T and the μ-level α ∈ [0, 1], which would—strictly speaking—have to be

expressed as ({t}, α) ∈ K.

Given a membership function μT̊ : T → [0, 1], an approximation via a μ-cluster can be

achieved in a variety of ways, e.g. via

� regular sampling, e.g. on equidistant regular grids, or following specific procedures,

such as the Transformation Method [Hanss02],

� unstructured/random (uniform, Latin hypercube, Sobol, etc.) sampling, or

� structured sampling, such as sparse-grid sampling [Walz16], or sequentially weighted

sampling [MäckHanss21].

Of course, this list is not exhaustive, and other methods are certainly viable.

Generally speaking, all of these methods have the commonality that they produce a set of

positions (t(i))
m
i=1, for which the corresponding membership is given by α(i) = μT̊ (t(i)), and,
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together, they form the μ-nodes KT̊ = {(t(1), α(1)), . . . , (t(m), α(m))}. The corresponding

μ-function yields the specificity relation μKT̊
 μT̊ , i.e.

μKT̊
(t) =

{
μT̊ (t) if t = t(i) for some i = 1, . . . ,m and

0 otherwise

}
≤ μT̊ (t) (5.56)

for all t ∈ T. The μ-cluster KT̊ always constitutes an inner approximation of μT̊ , and the

underestimation depends on the resolution of its μ-nodes.

5.2.4.2 Sample-Based Membership Propagation

Given an input fuzzy variable T̊ ∼ KT̊ whose membership function is represented via a

μ-cluster KT̊ , the membership function of the output fuzzy variable Z̊ = φ(T̊ ) is, according

to the explicit membership extension in Eq. (5.20), given by

μZ̊(z) = sup
t∈T : z=φ(t)

μKT̊
(t) = sup

t∈T :z=φ(t)

max
(t′,α)∈KT̊ : t=t′

α

= max
(t′,α)∈KT̊ :z=φ(t′)

α = max
(z′,α)∈KZ̊ :z=z′

α = μKZ̊
(z)

(5.57)

for all z ∈ Z. This membership function, too, can be described as the μ-function μKZ̊

induced by the μ-cluster

KZ̊ = {(φ(t), α) : (t, α) ∈ KT̊} , (5.58)

which corresponds to Eq. (5.54). The μ-node positions are simply propagated under φ,

which—in this case—does not require any intrusive modifications of φ, and the memberships

are carried along. Thus, the propagation rule can be applied to black-box models without

much computational effort.

Similarly, the marginalization of KT̊ onto the i-th dimension is straightforward to compute

via

KT̊i
= {(ti, α) : (t, α) ∈ KT̊} . (5.59)

Of course, if KT̊ is a sampled approximation of μT̊ , then KZ̊ merely provides an inner

approximation of the corresponding membership extension μZ̊ because, then, by Eq. (5.56)

it holds that

μKZ̊
(z) = sup

t∈T : z=φ(t)

μKT̊
(t) ≤ sup

t∈T :z=φ(t)

μT̊ (t) = μZ̊(z) (5.60)

for all z ∈ Z. Whereas it is non-trivial to exactly reconstruct the output membership

function μZ̊ from KZ̊—Walz proposes a binning approach [Walz16]—, good approximations,

e.g. of the output possibility measure ΠZ̊ , can be found via Eq. (5.23) yielding

ΠZ̊(B) ≈ ΠKZ̊
(B) = max

(z,α)∈KZ̊ :z∈B
α = max

(t,α)∈KT̊ :φ(t)∈B
α (5.61)
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for B ∈ (Z). Compared to Vanilla Monte-Carlo methods, which sum over the samples—or

rather over their weights—that map into B under φ, one maximizes over their memberships

instead. As a rule of thumb, the quality of this approximation grows with the number

of samples that fall into B. If this number is zero, it is difficult to judge whether the

possibility of B is zero, too, or whether the initial sampling was defective. Naturally,

precision increases for large sample numbers and for larger, more inclusive sets B.

Similar observations apply to the approximation of necessities, cumulative distribution

functions and expectations.

Example 18: Π-IM for Ratio of Gaussian Means

Suppose Q̃1 ∼ N (θ1, 1) and Q̃2 ∼ N (θ2, 1) are two independent observations from

Gaussian distributions with unknown means θ1, θ2 ∈ R and unit variance and zero

covariance. Using the same technique for the μ-transform as in Example 15, the joint

confidence distribution of θ1 and θ2 obtained under the Complementary Cumulative

μ-transform of the χ2(2)-distributed imprecise variable Ṽ = (Q̃1 − θ1)
2 + (Q̃2 − θ2)

2

is given by

γθ̂1,θ̂2|q1,q2(θ1, θ2) = 1− Fχ2(2)

(
(q1 − θ1)

2 + (q2 − θ2)
2
)

for θ1, θ2 ∈ R and the observations Q̃1 = q1 and Q̃2 = q2.

The μ-clusters Kθ̂1
and Kθ̂2

obtained by the marginalization of the μ-cluster Kθ̂1,θ̂2

approximating γθ̂1,θ̂2|q1,q2 via m = 5 · 103 Latin hypercube samples on [2, 10]× [0, 8]

for the observations53

q1 = 6.38 and q2 = 3.46

are shown below.
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The feature μ-cluster Kδ̂ for δ = φ(θ1, θ2) =
θ1
θ2

obtained by the propagation of Kθ̂1,θ̂2
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under φ is shown below on the left. Additionally, the propagation output K′
δ̂
for the

observations54

q′1 = 5.98 and q′2 = −1.16

from m′ = 5 · 103 initial Latin hypercube samples on [3, 9]× [−4, 2] is shown below

on the right.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

δ

α

−200 −100 0 100 200
0

0.2

0.4

0.6

0.8

1

δ

α

Feature μ-Cluster Kδ̂ Feature μ-Cluster Kδ̂
′

Notice that, in order to better resolve the edge of the implied μ-function μK′
δ̂
, espe-

cially in the second figure, it is necessary to generate more samples of θ2 around the

origin since these points are mainly contributing to the μ-function far away from zero.

For instance, adding m′′ = 5 · 103 Latin hypercube samples on [3, 9] × [−0.1, 0.1],

which produces the μ-cluster K′′
θ̂1,θ̂2

, shown below on the left, results in the additional

feature μ-cluster K′′
δ̂
shown on the right, and achieves the desired resolution of the

approximated feature distribution γδ̂|q′1,q′2 .

4 6 8
−0.1

−0.05

0

0.05

0.1

θ1

θ 2

0

0.2

0.4

0.6

0.8

1

−200 −100 0 100 200
0

0.2

0.4

0.6

0.8

1

δ

α

Parameter μ-Cluster K′′
θ̂1,θ̂2

Feature μ-Clusters K′
δ̂
and K′′

δ̂

The problem of finding confidence intervals of ratios of means is known as the

Fieller-Creasy Problem [KappenmanGeisserAntle70], for which the Fieller Theo-

rem [Fieller54] provides a theoretical solution. The results obtained in the Π-IM

framework are similar to the membership functions obtained by Martin and Liu55 for
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this problem; when replacing the above μ-transform by the Symmetric Cumulative

μ-transform of the normally distributed imprecise variable

Ṽ =
Q̃1 − θ1

θ2
Q̃2√

1 +
(
θ1
θ2

)2 ∼ N (0, 1)

they coincide. As Martin and Liu observe, “the [second output μ-cluster] has a

very unusual shape” [MartinLiu15, p. 134] indicating confidence regions that are

composed of two disjoint intervals, which further confirms the results of Fieller.

In conclusion, both the membership transform and the membership extension are straight-

forward to implement via interval- and sampling-based methods. Especially the propagation

of fuzzy variables, the most common membership extension operation, is very efficiently

implemented by the latter, whereas general implicit extensions may only be computed

through less efficient but rigorous interval arithmetic. The following chapter will extensively

use these numerical strategies and showcase some applications to the analysis of dynamical

systems.

53These data points correspond to those considered by Martin and Liu [MartinLiu15, Chapter 7.3.2].
54See footnote 53.
55Martin and Liu call this a marginal plausibility function, which is—albeit related—not to be confused

with the plausibility function defined here.
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Chapter 6

Possibilistic Filtering

‘As simple as that? You didn’t use magic?’

‘Only common sense. It’s a lot more reliable in the

long run.’

Terry Pratchett, Mort

This chapter is intended to showcase an application of the derived theory to dynamical

systems, namely dynamic filtering.

Possibilisitic analyses have repeatedly been applied to dynamical systems, e.g. to crash

simulations [BiehlerEtAl19, MäckHanss19], predictions of the vibratory properties of he-

licopters [FröhlichEtAl22], the stability analysis of machining systems [HamannEtAl18],

and controller design [HofmannHanss16, HoseMäckHanss19b]. While these analyses are,

for the most part, restricted to uncertainty propagation, i.e. to the propagation of fuzzy

variables through a dynamic model, considerably fewer have attempted to perform statis-

tical inference, e.g. for the parameter identification of machining systems [HoseEtAl18] or

simple airplane models [HoseHanss19d].

The main statistical tasks in the analysis of dynamical systems are decision-making,

including, e.g., the system design and control, and the identification of model parameters

and the estimation of the current dynamic states, which may be subsumed under the

term inference. An exhaustive discussion of these tasks is beyond the scope of this thesis;

however, thorough overviews of classical concepts of the former and the latter are, e.g., given

by Skogestad and Postlethwaite [SkogestadPostlethwaite07] and Tangirala [Tangirala14],

respectively.

The filtering problem to be considered next can be summarized as the task of quantifying

the belief surrounding an estimate of the current state of a dynamical system. This is, e.g.,

motivated by the need to be later able to make robust decisions, e.g. to find appropriate

control inputs. Preliminary concepts of a possibilistic filter [BenferhatDuboisPrade00,
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HoseHanss21a, HoseHanss21b] serve as a basis for the following discussion, which is also

inspired by set-membership filtering techniques [MilaneseNovara11, LeongNair16].

The presented filtering methodology can be understood as a rigorous alternative to Bayesian

filters [Särkkä13], where—apart from the general unsuitedness of additive belief structures

inherent to the latter—the common, but problematic, modeling of process noise by a single

probability measure is avoided. As explained in more detail below, this perturbation is

usually an expression of missing insight into the actual system dynamics—rather than

of actual random behavior of the system; in fact, the system may very well be entirely

deterministic and only imperfectly described, a property that is common to the majority

of mathematical abstractions and models. By modeling this uncertainty with a precise

probability distribution, the actual information is not accurately described, and any

interpretability of the corresponding belief measure, something engineers should seek to

provide, is eliminated.

Next, the statistical filtering setup shall be discussed, and two formulations of a possibilistic

filter shall be derived.

6.1 Formulation

Consider a time-discrete nonlinear system with the state space description consisting of

the dynamic model

xk = f (xk−1,uk−1,nk−1) , (6.1)

and the observation/measurement model

yk = g (xk) +wk, (6.2)

where xk ∈ X ⊆ RDX is the system state, including, e.g., the pose (position and orientation)

and (translational and rotatory) velocities of a robot. Furthermore, uk ∈ U ⊆ RDU is the

system input, yk ∈ Y ⊆ RDY is the system output, nk ∈ N ⊆ RDN is the process noise

and wk ∈ W ⊆ RDW is the additive measurement error at time instants k = 1, . . . , K,

respectively. The initial state is denoted by x0 ∈ X.

The input is also said to be the control input because it describes an exogenous actuation

from an operator, controller, etc. Conversely, the process noise is considered to be an

uncontrollable, unknown input to the system such that its time evolution, i.e. the sequence

of states x0, . . . ,xk is not entirely predictable. Additionally, the measurement model

describes the fact that the states may only be indirectly observable56 and perturbed

by the (random) measurement error. The additivity of the latter is usually justified as

a credible uncertainty description of noisy sensor output and considerably justifies the

56A thorough discussion and treatment of the concept of observability cannot be provided here, see

e.g. [SkogestadPostlethwaite07, Chapter 4].
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following deliberations. It is certainly possible to extend the derived filtering scheme to

non-additive measurement noise, but the increased generality would come at the expense

of a significantly higher computational effort, and it would prohibit the particle-based

implementation proposed below.

Only if x0 and n0, . . . ,nk−1 were known in addition to u0, . . . ,uk−1, one would be able to

precisely predict the true value of x1, . . . ,xk. Furthermore, knowing w1, . . . ,wk, would

enable one to also predict y1, . . . ,yk. Yet, precisely x0, n0, . . . ,nk−1,w1, . . . ,wk are

unknown, and the fundamental question is, what information about the states is gained

from the measurements y1, . . . ,yk that are observed instead. Consequently, the aim of a

filter for the system in Eqs. (6.1) and (6.2) is to infer the current system state xk given

the past and current observations y1, . . . ,yk, as well as the dynamic and measurement

model and the past inputs u0, . . . ,uk−1.

This task may be cast into the framework of statistical inference, such that the problem

becomes that of deriving an appropriate IM for the current state given suitable uncertainty

models of the initial state, process noise and measurement error. More precisely, a Π-PM

of xk shall be derived in the following; but, before doing this, a statistical model of the

dynamic and measurement model must be formulated, i.e., the uncertainties contained

therein must be addressed.

6.1.1 Statistical Model

Beginning with the least debatable uncertainty model, the measurement errors w1, . . . ,wk

are generally assumed to be observations of the k imprecise variables W̃1, . . . , W̃k that are

iid realizations of the imprecise variable W̃ ∼ PW̃ . Usually, W̃ is modeled as a multivariate

Gaussian variable W̃ ∼ N (0,R) with zero mean and known covariance matrix R, which

can, e.g., be justified because the error exhibited by most sensors is approximately zero-

mean Gaussian. In any case, one may assume that W̃ is (robustly) described by an

available (I)P description distribution πW̃ , such that the possibilistic uncertainty model of

the measurement error is W̃1, . . . , W̃k ∼ πW̃ . These marginal variables are often assumed to

be independent, but for the sake of robustness, one may also assume unknown interaction.

From this discussion alone, one could formulate the statistical model

Ỹk = g(xk) + W̃k (6.3)

which, under the membership inversion and the Pivotal Step in Eq. (4.27), implies a

Π-IM γx̂k|Ỹk producing the confidence distributions

γx̂k|yk
(xk) = πỸk|xk

(yk) = πW̃ (yk − g (xk)) (6.4)

for the unknown current state. This would, however, entirely neglect any information that

may have been obtained from the previous observations y1, . . . ,yk−1 with respect to the
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previous state sequence x0, . . . ,xk−1, which is connected to xk via the dynamic model in

Eq. (6.1), and may improve the inference. Yet, the inclusion of such information requires

additional considerations.

The process noise n0, . . . ,nk−1, too, is often considered to be composed of k iid realizations

of a multivariate Gaussian variable. This approach follows the early formulations, e.g.

of the Kalman filter [Kalman60], and allows for intuitive and straightforward recursive

formulations of Bayesian filters [Särkkä13, ShaoHuangLee10], which do, however, suffer

from probability dilution as shown by the False Confidence Theorem [BalchMartinFerson19].

While one may argue that, as a model for the superposition of many random effects, every

realization ni itself may indeed be approximately Gaussian, it is much more challenging to

fix the appropriate mean and covariance in advance—and it is undoubtedly questionable to

assume these to be iid. More precisely, one may argue that the process noise is primarily an

effect of unmodeled or ill-understood system dynamics, including but not limited to such

effects as, e.g., the integration error made by transforming a time-continuous into a time-

discrete system. They might exhibit very little random behavior and, instead, obey largely

deterministic laws—explaining the success that, e.g., the identification of hidden system

dynamics via Gaussian Process models has seen recently [EschmannEbelEberhard21]. In

other words, modeling the process noise to follow a precise probability distribution may

fail to describe the dynamics accurately, and IP-based uncertainty models are preferable.

To avoid unwarranted assumptions, it is always safe to assume the extreme case that the

probability distribution of Ñ is confined to N, and nothing more. This lack of knowledge can

be described exactly by a (quasi-)vacuous57 IP description distribution on N. Additionally,

it includes a purely deterministic dynamic model as explained in Section 4.3.5 because

distinguishing between (quasi-)vacuous imprecise variables and unknown parameters in

the absence of data is, to a certain extent, arbitrary; the resulting membership function is

always given by the (quasi-)vacuous distribution Q(N). Alternatively,—but only with good

reason—one could also justify an alternative (I)P description distribution πÑ if genuine

imprecise probabilistic information on the distribution of Ñ is available; therefore, the

following discussion assumes a general possibilistic uncertainty model Ñ0, . . . , Ñk−1 ∼ πÑ ,

but πÑ = Q(N) should usually be assumed. In any case, any kind of independence

assumption would, in most cases, be questionable, and unknown interaction between these

marginals should usually be assumed.

Similar arguments justify modeling the information about the initial state x0 via the

quasi-vacuous distribution Q(X0) on X0 ⊆ X, but here the more general possibilistic

uncertainty model X̃0 ∼ πX̃0
is considered.

Finally, if Ñ0, . . . , Ñk−1, W̃1, . . . , W̃k, X̃0 are assumed to be imprecise variables, the sequence

of states also constitutes a sequence of imprecise variables X̃1, . . . , X̃k that are correlated

57The distribution is vacuous if the reference space is N and quasi-vacuous if the reference space is RDN .
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via the statistical dynamic model

X̃1 = f
(
X̃0,u0, Ñ0

)
...

X̃k = f
(
X̃k−1,uk−1, Ñk−1

)
,

(6.5)

and the measurements are modeled as imprecise variables Ỹ1, . . . , Ỹk given by the statistical

measurement model
Ỹ1 = g

(
X̃1

)
+ W̃1

...

Ỹk = g
(
X̃k

)
+ W̃k

(6.6)

for k = 1, . . . , K.

To summarize the above discussion, Eqs. (6.5) and (6.6) constitute the implicit relationship

0 = Ξ(Ñ0, . . . , Ñk−1, W̃1, . . . , W̃k, X̃0, . . . , X̃k, Ỹ1, . . . , Ỹk)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X̃1 − f
(
X̃0,u0, Ñ0

)
...

X̃k − f
(
X̃k−1,uk−1, Ñk−1

)

Ỹ1 − g
(
X̃1

)
− W̃1

...

Ỹk − g
(
X̃k

)
− W̃k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.7)

between the imprecise variables that can be described possibilistically, i.e. between the

process noise Ñ0, . . . , Ñk−1 ∼ πÑ , the measurement error W̃1, . . . , W̃k ∼ πW̃ and the initial

state X̃0 ∼ πX̃0
, and the past and current states X̃1, . . . , X̃k and measurements Ỹ1, . . . , Ỹk

with unknown possibility distribution, where Ỹ1 = y1, . . . , Ỹk = yk is observed for a given

input sequence u0, . . . ,uk−1. Altogether, this constitutes the statistical filtering model.

6.1.2 Filter Formulation

The statistical filtering model in Eq. (6.7) itself is not explicitly determined by any unknown

population parameters; in particular, the current state xk itself, as the unknown quantity

of interest in filtering, should not be considered to be a population parameter but rather

an imprecise variable that must be predicted by a Π-PM κX̃k|Ỹ1,...,Ỹk . The statistical model

in Eq. (6.7) forms the basis to construct at least two different filtering Π-PMs of X̃k, which

shall be discussed in the following.



170 Chapter 6: Possibilistic Filtering

6.1.2.1 Batch Formulation

Following earlier ideas by Hose and Hanss [HoseHanss21a], a batch filter is straight-

forward to derive. To this end, a joint possibility distribution of the marginal vari-

ables Ñ0, . . . , Ñk−1, W̃1, . . . , W̃k, X̃0 must be found. Here, it is constructed step-wise.

A joint possibility distribution of W̃1, . . . , W̃k can usually be obtained directly by the

μ-transform of the joint probability distribution

PW̃1,...,W̃k
= C

(
PW̃1

, . . . ,PW̃k

)
, (6.8)

e.g. for C = C ind. if the measurements are considered to be stochastically independent—

which is often applicable when noisy sensor output is modeled by the measurement error—,

yielding πW̃1,...,W̃k
.

In contrast, for the process noise Ñ0, . . . , Ñk−1, the UI-Π-copula J = J UI must usually be

applied to find the joint possibility distribution

πÑ0,...,Ñk−1
= J

(
πÑ0

, . . . , πÑk−1

)
(6.9)

from the IP descriptive marginal distributions πÑ0
, . . . , πÑk−1

due to the process noise

possibly describing unmodeled system dynamics, making Ñ0, . . . , Ñk−1 highly correlated.

However, assuming quasi-vacuousness marginal distributions this always results in the

quasi-vacuous joint distribution πÑ0,...,Ñk−1
= Q(×k

N) on the k-fold Cartesian product

of N with itself.

Finally, the relationship between the remaining three marginals (Ñ0, . . . , Ñk−1), (W̃1, . . . , W̃k)

and X̃0 can be assumed to be well described by stochastic independence, such that

the SI-Π-copula J SI can usually be applied for the construction of the joint possibility

distribution

πÑ0,...,Ñk−1,W̃1,...,W̃k,X̃0
= J

(
πÑ0,...,Ñk−1

, πW̃1,...,W̃k
, πX̃0

)
. (6.10)

However, if both (Ñ0, . . . , Ñk−1) and X̃0 are described by quasi-vacuous possibility distri-

butions, one may, by Proposition 36, apply the non-interactive Π-copula J NI.

In principle, a possibilistic description πX̃1,...,X̃k,Ỹ1,...,Ỹk
of the past and current

states X̃1, . . . , X̃k and measurements Ỹ1, . . . , Ỹk can directly be computed from the implicit
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extension of πÑ0,...,Ñk−1,W̃1,...,W̃k,X̃0
under Ξ, yielding the batch description

πX̃1,...,X̃k,Ỹ1,...,Ỹk
(x1, . . . ,xk,y1, . . . ,yk)

= sup
x0∈X,

n0,...,nk−1∈N,
w1,...,wk∈W :

0=Ξ( n0,...,nk−1,w1,...,wk,
x0,...,xk,y1,...,yk )

πÑ0,...,Ñk−1,W̃1,...,W̃k,X̃0
(n0, . . . ,nk−1,w1, . . . ,wk,x0)

= sup
x0∈X,

n0,...,nk−1∈N,
w1,...,wk∈W :

x1=f(x0,u0,n0),

...
xk=f(xk−1,uk−1,nk−1),

y1=g(x1)+w1,

...
yk=g(xk)+wk

πÑ0,...,Ñk−1,W̃1,...,W̃k,X̃0
(n0, . . . ,nk−1,w1, . . . ,wk,x0)

(6.11)

for all x1, . . . ,xk ∈ X and all y1, . . . ,yk ∈ Y.

From this expression, one could already construct a Π-PM of X̃1, . . . , X̃k given the

observations Ỹ1 = y1, . . . , Ỹk = yk. However, since only the current state is of interest,

and the past states are considered to be ‘nuisance predictions’, a further marginalization

yields the marginal description πX̃k,Ỹ1,...,Ỹk
given by

πX̃k,Ỹ1,...,Ỹ
(xk,y1, . . . ,yk) = sup

x1,...,xk−1∈X
πX̃1,...,X̃k,Ỹ1,...,Ỹk

(x1, . . . ,xk,y1, . . . ,yk) (6.12)

for all xk ∈ X.

Under the Semi-Pivotal Step in Eq. (4.51), this allows one to define a Π-PM κX̃k|Ỹ1,...,Ỹk
of X̃k given Ỹ1, . . . , Ỹk. For the observations Ỹ1 = y1, . . . , Ỹk = yk, this produces the

prediction distributions

κX̃k|y1,...,yk
(xk) = πX̃k,Ỹ1,...,Ỹk

(xk,y1, . . . ,yk)

= sup
x0,...,xk−1∈X,
n0,...,nk−1∈N,
w1,...,wk∈W :

x1=f(x0,u0,n0),

...
xk=f(xk−1,uk−1,nk−1),

y1=g(x1)+w1,

...
yk=g(xk)+wk

πÑ0,...,Ñk−1,W̃1,...,W̃k,X̃0
(n0, . . . ,nk−1,w1, . . . ,wk,x0)

(6.13)

for all xk ∈ X, given the input and measurement sequences u0, . . . ,uk−1 and y1, . . . ,yk,

respectively.

This possibilistic batch filtering formulation in the form of a mathematical program,

including possibly non-linear and/or non-convex constraints and objective functions, is
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not trivial and can, generally, only be solved efficiently via numerical optimization in

special cases, such as linear time-invariant (LTI) systems in connection with concave

and/or (quasi-)vacuous input possibility distributions [HoseHanss21a].

LTI Batch Filtering Consider the LTI system dynamics and the measurement model

given by

f(x,u,n) = Ax+Buu+Bnn and g(x) = Cx (6.14)

for the system matrix A ∈ RDX×DX , the control input matrix Bu ∈ RDX×DU , the noise

input matrix Bn ∈ RDX×DN , and the observation matrix C ∈ RDY×DX . Let the process

noise and initial state descriptions be (quasi-)vacuous on N and X0, respectively, and let

the measurement error description, e.g., be given by

πW̃1,...,W̃k
(w1, . . . ,wk) = 1− Fχ2(k·DW)

(
k∑
i=1

wT
i ·R−1wi

)
(6.15)

for w1, . . . ,wk ∈ W. This possibility distribution is—by the inversion of the Comple-

mentary Cumulative μ-transform of the χ2-distributed variable Ṽ =
∑k

i=1 W̃
T
i ·R−1W̃i

with k ·DW degrees of freedom—consistent with the joint probability distribution PW̃1,...,W̃k

of k iid multivariate Gaussian variables W̃1, . . . , W̃k ∼ N (0,R) with covariance matrix R,

cf. Examples 15 and 18. Moreover, it coincides with the Optimal μ-transform of PW̃1,...,W̃k
.

Then, the possibilistic batch filtering formulation in Eq. (6.13) reduces to

κX̃k|y1,...,yk
(xk) = sup

x0∈X0,
x1,...,xk−1∈X,
n0,...,nk−1∈N,
w1,...,wk∈W :

x1=Ax0+Buu0+Bnn0,
...

xk=Axk−1+Buuk−1+Bnnk−1,
y1=Cx1+w1,

...
yk=Cxk+wk

πW̃1,...,W̃k
(w1, . . . ,wk)

= sup
x0∈X0,

x1,...,xk−1∈X,
n0,...,nk−1∈N,
w1,...,wk∈W :

x1=Ax0+Buu0+Bnn0,
...

xk=Axk−1+Buuk−1+Bnnk−1,
y1=Cx1+w1,

...
yk=Cxk+wk

1− Fχ2(k·DW)

(
k∑
i=1

wT
i ·R−1wi

) (6.16)

for all xk ∈ X, given the in- and output sequences u0, . . . ,uk−1 and y1, . . . ,yk, respectively.

This expression describes a basic mathematical program with linear equality constraints and

a non-convex, but well-behaved, objective function that can efficiently be solved by standard

optimization algorithms building upon an abundance of existing theory [NocedalWright06].
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An implementation of this possibilistic LTI batch filter based on polytopes and linear

programming is described by Hose and Hanss [HoseHanss21a]. On the one hand, this

implementation guarantees a numerically exact solution of the mathematical program in

Eq. (6.16); on the other hand, it is computationally demanding and quickly suffers from

numerical infeasibility problems for large in- and output sequences, i.e. for large k. In

order to enable the real-time applicability of this batch filtering technique, it would be

recommendable to consider moving horizon-like batch filtering [RaoRawlingsMayne03],

where the in- and output sequences are to consist of only the last k′ data points, where k′ �
k, such that the optimization variables in the mathematical program are kept at a fixed

number and do not grow infinitely. While this implies a loss of information, it may

result in a considerable speed-up and robustify the inference process by discarding older—

possibly misleading—data and, thus, avoid numerical infeasibilities. This does, however,

still not solve the issue of the restriction to LTI systems, which is quite limiting when,

especially in engineering, system descriptions tend to be linear—not least due to the

increased computational power that is available nowadays, and allows to simulate non-

linear dynamics, and due to the sensor models moving away from direct to more indirect

observations. Therefore, a different, application-oriented filtering formulation shall be

pursued in the following.

6.1.2.2 Recursive Formulation

An arguably computationally more tractable filtering technique is obtained when de-

riving a recursive formulation based on iterative predictions, (inversions) and updates—

similar to the steps commonly found in other filter formulations [Kalman60, Särkkä13,

ShaoHuangLee10, MilaneseNovara11, LeongNair16]. The general feasibility of such

schemes in a possibilistic setting has so far been considered by few scholars, e.g. from a

perspective of possibilistic conditioning [BenferhatDuboisPrade00]. However, Hose and

Hanss [HoseHanss21b] describe a filtering Π-IM, treating the current state as an unknown

parameter. Even though this philosophy disagrees with its interpretation as an imprecise

variable here, their derivation still serves as a guideline to the following inductive derivation

in k.

The statistical model in Eq. (6.7) admits the decomposition

0 = Ξ
(
Ñ0, . . . , Ñk−1, W̃1, . . . , W̃k, X̃0, . . . , X̃k, Ỹ1, . . . , Ỹk

)

=

⎛
⎜⎝ Ξ1(Ñ0, . . . , Ñk−2, W̃1, . . . , W̃k−1, X̃0, . . . , X̃k, Ỹ1, . . . , Ỹk)

Ξ2(Ñk−1, X̃k−1, X̃k)

Ξ3(W̃k, X̃k, Ỹk)

⎞
⎟⎠ (6.17)

as visualized in Figure 6.1. Put simply, submodel Ξ1 describes the relation between the

past states and the past measurements, whereas Ξ2 is the relation between the past and

current state. Finally, submodel Ξ3 connects the current state to the current measurement.



174 Chapter 6: Possibilistic Filtering

Ξ3 = Ỹk − g(X̃k, W̃k)

Ξ2 = X̃k − f(X̃k−1,uk−1, Ñk−1)

Ξ1 =

{
X̃i − f(X̃i−1,ui−1, Ñi−1)

Ỹi − g(X̃i, W̃i)

}
for i = 1, . . . , k − 1

II

I

0 = (Ξ1,Ξ2,Ξ3)

0 = (Ξ1,Ξ2)

Figure 6.1: Two-fold decomposition of 0 = Ξ = (Ξ1,Ξ2,Ξ3).

As a preliminary remark, observe that 0 = Ξ1 is equivalent to the full statistical model 0 = Ξ

at time step k − 1. Assuming that a description distribution πX̃k−1,Ỹ1,...,Ỹk−1
describes the

statistical model implied by 0 = Ξ1, i.e. 0 = Ξ at the previous time step k − 1, it remains

to be shown that, therefrom, one can construct a description distribution πX̃k,Ỹ1,...,Ỹk

under 0 = Ξ at the current time step k.

This assumption is fulfilled for k = 1, where only the possibilistic description of the

initial state X̃0 in the absence of measurements is available. Reiterating the argument

from Section 4.3.5 that a prediction distribution in the absence of data coincides with a

description distribution, the corresponding initial filtering Π-PM is

κX̃0|∅ = πX̃0
. (6.18)

If one can show the sufficiency of the existence of such a possibilistic descrip-

tion πX̃k−1,Ỹ1,...,Ỹk−1
for the purpose of deriving a possibilistic description πX̃k,Ỹ1,...,Ỹk

, the

admissibility of the recursive filter formulation follows by induction in k.

To this end, the following general strategy is proposed: The two remaining statistical

submodels Ξ2 and Ξ3 are considered individually, leading to three distinct possibilistic

descriptions stemming from different information in the statistical model implied by 0 = Ξ.

Following Figure 6.1, the two-fold decomposition also requires a two-fold re-combination

of the information/descriptions, which shall now be approached step-wise.

1. In a preliminarly step, the vacuous extension of the previous description πX̃k−1,Ỹ1,...,Ỹk−1

from (X̃k−1, Ỹ1, . . . , Ỹk) onto (X̃k−1, X̃k, Ỹ1, . . . , Ỹk) is formally defined via Eq. (3.42)

yielding

π
(1)

X̃k−1,X̃k,Ỹ1,...,Ỹk
(xk−1,xk,y1, . . . ,yk) = πX̃k−1,Ỹ1,...,Ỹk−1

(xk−1,y1, . . . ,yk−1) (6.19)

for all xk−1,xk ∈ X and all y1, . . . ,yk ∈ Y.
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The reason for this technicality is the intended combination with submodels Ξ2 and Ξ3

at nodes I and II, respectively. Such combinations of possibilistic descriptions must

happen either via the conjunction on the same sample space, or via the construction of a

joint distribution on entirely disjoint sample spaces. Since submodels Ξ1 and Ξ2 share a

dependency on X̃k−1, the conjunction on a shared sample space promises to yield a more

specific description.

2. The (implicit) extension of πÑ under Ξ2 produces the description πX̃k−1,X̃k
given by

πX̃k−1,X̃k
(xk−1,xk) = sup

nk−1∈N :
0=Ξ2(nk−1,xk−1,xk)

πÑ (nk−1)

= sup
nk−1∈N :

xk=f(xk,uk−1,nk−1)

πÑ (nk−1)

(6.20)

for all xk−1,xk ∈ X.

3. For the conjunction with π
(1)

X̃k−1,X̃k,Ỹ1,...,Ỹk
at node I, this description, too, must be ex-

tended onto (X̃k−1, X̃k, Ỹ1, . . . , Ỹk), producing the vacuous extension π
(2)

X̃k−1,X̃k,Ỹ1,...,Ỹk

given by

π
(2)

X̃k−1,X̃k,Ỹ1,...,Ỹk
(xk−1,xk,y1, . . . ,yk) = πX̃k−1,X̃k

(xk−1,xk) (6.21)

for all xk−1, . . . ,xk ∈ X and all y1, . . . ,yk−1 ∈ Y.

Now, both π
(1)

X̃k−1,X̃k,Ỹ1,...,Ỹk
and π

(2)

X̃k−1,X̃k,Ỹ1,...,Ỹk
describe (X̃k−1, X̃k, Ỹ1, . . . , Ỹk) and can be

combined.

4. For the conjunction of π
(1)

X̃k−1,X̃k,Ỹ1,...,Ỹk
and π

(2)

X̃k−1,X̃k,Ỹ1,...,Ỹk
, Lemma 22 must generally

be applied, which implies a combination under the UI-Π-copula, i.e. J (1,2) = J UI in

π
(1,2)

X̃k−1,X̃k,Ỹ1,...,Ỹk
= J (1,2)

(
π
(1)

X̃k−1,X̃k,Ỹ1,...,Ỹk
, π

(2)

X̃k−1,X̃k,Ỹ1,...,Ỹk

)
. (6.22)

However, if πÑ is (quasi-)vacuous—which has been argued to often be applica-

ble –, then so are πX̃k−1,X̃k
and π

(2)

X̃k−1,X̃k,Ỹ1,...,Ỹk
. In this case, Lemma 20 allows the

application of the more specific NI-Π-copula, i.e. J (1,2) = J NI.

For the re-combination of 0 = (Ξ1,Ξ2) and 0 = Ξ3 at node II, again, a shared sample

space is sought.

5. Since Ξ3 does not depend on X̃k−1, which is also not required in the final descrip-

tion πX̃k,Ỹ1,...,Ỹk
, one may marginalize this dependency from π

(1,2)

X̃k−1,X̃k,Ỹ1,...,Ỹk
, i.e.

π
(1,2)

X̃k,Ỹ1,...,Ỹk
(xk,y1, . . . ,yk) = sup

xk−1∈X
π
(1,2)

X̃k−1,X̃k,Ỹ1,...,Ỹk
(xk−1,xk,y1, . . . ,yk) (6.23)

for all xk ∈ X and all y1, . . . ,yk ∈ Y.
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6. The (inverse) extension of πW̃k
under Ξ3 produces πX̃k,Ỹk

given by

πX̃k,Ỹk
(xk,yk) = sup

wk∈W, :
0=Ξ3(wk,xk,yk)

πW̃ (wk)

= sup
wk∈W, :

yk=g(xk)+wk

πW̃ (wk) = πW̃k
(yk − g (xk))

(6.24)

for all xk ∈ X and all yk ∈ Y.

7. This inverse extension is also extended onto (X̃k, Ỹ1, . . . , Ỹk), producing the vacuous

extension π
(3)

X̃k,Ỹ1,...,Ỹk
given by

π
(3)

X̃k,Ỹ1,...,Ỹk
(xk,y1, . . . ,yk) = πX̃k,Ỹk

(xk,yk) (6.25)

for all xk ∈ X and all y1, . . . ,yk ∈ Y.

8. Finally, the desired possibilistic description

πX̃k,Ỹ1,...,Ỹk
= π

(1,2,3)

X̃k,Ỹ1,...,Ỹk
= J UI

(
π
(1,2)

X̃k,Ỹ1,...,Ỹk
, π

(3)

X̃k,Ỹ1,...,Ỹk

)
(6.26)

is obtained under the conjunction of π
(12)

X̃k,Ỹ1,...,Ỹk
and π

(3)

X̃k,Ỹ1,...,Ỹk
at node II. Here,

Lemma 22 must be applied, because neither π
(12)

X̃k,Ỹ1,...,Ỹk
nor π

(3)

X̃k,Ỹ1,...,Ỹk
warrant the

application of a tighter Π-copula under Lemmas 18, 20 or 21.

From this point on, the procedure is the same as for the derivation of the batch filter

formulation in Section 6.1.2.1.

9. Define the Π-PM κX̃k|Ỹ1,...,Ỹk via the prediction distributions obtained under the

Semi-Pivotal Step

κX̃k|y1,...,yk
(xk) = πX̃k,Ỹ1,...,Ỹk

(xk,y1, . . . ,yk), (6.27)

given the input and output sequences u0, . . . ,uk−1 and y1, . . . ,yk, respectively.

The final possibility distribution π
X̃k,Ỹ1,...,Ỹk

describes the statistical model in Eq. (6.7)

in the same way that the batch description in Eq. (6.11) does. In particular, κX̃k|Ỹ1,...,Ỹk
is guaranteed to be perceptive. Nevertheless, they may look very different when fully

evaluated. The reason for this is the non-uniqueness of possibilistic descriptions of an

experiment, which is, e.g., indicated by the virtually arbitrary choice of the plausibility

function in the IP-Π-transform. Here, the difference stems from the step-wise application

of the various Π-copulae instead of the batch application in the previous section, which

are both admissible as the discussion of Eq. (3.93) has revealed earlier.
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Fundamentally, the prediction distribution κX̃k|y1,...,yk
depends on the previous descrip-

tion πX̃k−1,Ỹ1,...,Ỹk−1
only through κX̃k−1|y1,...,yk−1

, πÑ and πW̃ . In particular, no other

values of πX̃k,Ỹ1,...,Ỹk−1
(·,y′

1, . . . ,y
′
k−1) or πX̃k,Ỹ1,...,Ỹk

(·,y′
1, . . . ,y

′
k), where y′

i �= yi for

any i = 1, . . . , k, are required throughout Steps 1-9, even though the (technical) vac-

uous extensions may appear to suggest otherwise. The measurement sequence y1, . . . ,yk
is fixed and may simply be carried along from one time step to the next, making the

distinction between the description πX̃k,Ỹ1,...,Ỹk
and the prediction distribution κX̃k|y1,...,yk

in this particular instance, to a certain extent, negligible.

An implementation of the recursive procedure outlined above would be characterized by

the repeated evaluation of Steps 1-9. The fundamental question is, what has been gained

from this decomposition. After all, both the batch and the recursive Π-PMs describe the

same information, just in slightly different ways. The answer to this question lies in the

computability of the two expressions. More precisely, the two possibilistic descriptions π
(2)

Q̃

and, in particular, π
(3)

Q̃
are much easier to compute than the first description π

(1)

Q̃
. The

former constitute basic extension problems with a fixed number of involved variables; the

latter, however, is, upon first sight, the same formulation as Eq. (6.13), only for k = k− 1,

and can, therefore, be assumed to be available from the previous time step. This is crucial

for the following recursive formulation.

The above, step-wise description helps demonstrate the feasibility of recursive filters;

however, a much simpler formulation can be found, which is more in line with standard

formulations, such as the Kalman filter or more advanced filtering techniques [Tangirala14].

More precisely, the recursive formulation can be summarized as an iterative succession

of (initialization,) predictions, inversions and updates as depicted in Figure 6.2.

Initialization By Eq. (6.18), the filter is initialized with

κX̃0|∅(x0) = πX̃0
(x0) (6.28)

for all x0 ∈ X in the initial step. No measurements have been obtained and, in the absence

of other information, the prediction distribiution of X̃0 coincides with its description

distribution.

Prediction Summarizing Steps 1-5, the prediction step projects the old information

about the previous state X̃k−1 onto the current state yielding the intermediate membership

function κX̃k|y1,...,yk−1
that can be interpreted as a prediction distribution of X̃k given only

the past measurements y1, . . . ,yk−1. To this end, X̃k−1 is propagated according to the

system dynamics taking the effect of the process noise Ñk−1, which potentially affects the

predicted state, into account, but not yet incorporating the information obtained from the
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Inversion

UpdatePrediction

Recursion

k = k + 1

κX̃k|y1,...,yk

κX̃k−1|y1,...,yk−1

κX̃k|y1,...,yk−1

κX̃k|ykyk

Initialization

k = 0

κX̃0|∅

Figure 6.2: Sequence of the recursive filtering process.

next measurement yk. That is, κX̃k|y1,...,yk−1
is given by

κX̃k|y1,...,yk−1
(xk) = sup

xk−1∈X,
nk−1∈N :

xk=f(xk−1,uk−1,nk−1)

J (1,2)
(
κX̃k−1|y1,...,yk

(xk−1), πÑ(nk−1)
)

(6.29)

for all xk ∈ X. This expression is a basic propagation of a combination of two input

membership functions.

Inversion Step 6 constitutes the inversion step, and is concerned with projecting the

information obtained from the current measurement yk onto the state space in order to

derive the intermediate membership function κX̃k|yk
that can be interpreted as a prediction

distribution of X̃k given only the current measurement, and is given by

κX̃k|yk
(xk) = πW̃ (yk − g (xk)) (6.30)

for all xk ∈ X, respectively. This expression is a basic membership inversion.

Update Finally, the updating or correction step summarizes Steps 7-9 by combining

both projections obtained under the prediction and inversion step. The resulting prediction
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distribution κX̃k|y1,...,yk
accounting for both the past and current measurements implied by

Steps 1-9 can then be expressed as

κX̃k|y1,...,yk
(xk) = J UI

(
κX̃k|y1,...,yk−1

(xk) , κX̃k|yk
(xk)

)
(6.31)

for all xk ∈ X. This expression is nothing more than combining the two intermediate

prediction functions.

Equations (6.28), (6.29), (6.30) and (6.31) constitute the four basic steps of the recursive

possibilistic filter, and any implementation must provide details on their computational

evaluation.

6.2 Implementation

In the following, a practical strategy for implementing a possibilistic filter is discussed.

Hose and Hanss [HoseHanss21b] arrive at the same recursive formulation treating the

current state as an unknown parameter, which can be explained with the quasi-non-

existent distinction between different types of fuzzy variables and membership functions

in the calculus of possibility theory. Therefore, Hose and Hanss’ idea of a particle-based

implementation can be adopted in a one-to-one fashion.

6.2.1 Particle Filter

The recursive filtering formulation enables an implementation based on μ-clusters

and sample-based membership arithmetic. Therefore, in the following, all of the in-

volved (intermediate) prediction distributions are assumed to be μ-functions induced

by μ-clusters. For instance, the (intermediate) prediction distribution of X̃k given the

measurements y1, . . . ,yk−1 is assumed to be described by the μ-cluster KX̃k|y1,...,yk−1

on X, which is, for convenience, simply written as Xk|1,...,k−1 = KX̃k|y1,...,yk−1
. That

is, κX̃k|y1,...,yk−1
= μXk|1,...,k−1

.

The μ-covers in all such μ-clusters, e.g. (x
(i)
k|1,...,k−1, α

(i)
k|1,...,k−1) ∈ Xk|1,...,k−1, shall be referred

to as particles, and their number m = |Xk|1,...,k−1| = |Xk|k| = |Xk|1,...,k| shall be kept

constant, i.e. i = 1, . . . ,m.

6.2.1.1 Initialization

In the initialization step, the initial μ-cluster X0 is constructed from Eq. (6.28). Following

the suggestions in Section 5.2.4.1, regular, random or structured sampling strategies may

be employed for this purpose. In practice, especially random sampling approaches, such
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as Latin hypercube sampling and Sobol sampling, exhibit advantageous properties—not

least because they avoid systematic sampling errors. More precisely, the initial μ-cluster

X0 =
{(

x
(i)
0 , α

(i)
0

)
: i = 1, . . . ,m

}
(6.32)

is composed of the m Latin hypercube samples x
(1)
0 , . . . ,x

(m)
0 on [X0] constituting the

particle positions and of the corresponding particle memberships computed from Eq. (6.28),

i.e.

α
(i)
0 = πX̃0

(
x
(i)
0

)
(6.33)

for i = 1, . . . ,m. Notice that, despite the general applicability of this assumption, this

implementation does not rely, e.g., on the (quasi-)vacuousness of πX̃0
but, instead, works

for arbitrary possibility distributions.

Subsequently, the prediction, inversion and updating step must be performed recursively

for every subsequent time step. The particles Xk−1|1,...,k−1 can be assumed to be available

from the previous time step k − 1 for k > 1, or by X0|∅ = X0 for k = 1.

6.2.1.2 Prediction

In the prediction step, the previous μ-cluster Xk−1|1,...,k−1 is propagated under the system

dynamics f given the previous input uk−1 according to Eq. (6.29).

First and foremost, this also requires a μ-cluster representation KÑ of the process noise Ñ ,

more precisely of πÑ . This description can be obtained in the same manner as in the

above initialization step. That is,

KÑ =
{(

n
(i)
k−1, α

(i)
k−1|∅

)
: i = 1, . . . ,m

}
(6.34)

is composed of the m Latin hypercube samples n
(1)
k−1, . . . ,n

(m)
k−1 on [N] and of the corre-

sponding μ-levels

α
(i)
k−1|∅ = πÑ

(
n

(i)
k−1

)
(6.35)

for i = 1, . . . ,m. This μ-cluster should be constructed anew in every time step in order to

avoid systematic errors.

In principle, one would, then, have to compute the combination of Xk−1|1,...,k−1 and KÑ

under the appropriate Π-copula J (1,2) under Eq. (5.38) leading to a total of m2 μ-nodes

in the resulting μ-cluster. In order to keep the number of particles fixed to m, one would

then have to select m out of these m2 μ-nodes to proceed with. However, as long as KÑ

is obtained via random sampling and the selection is performed randomly (with equal

sampling weights), it is equivalent to consider the joint μ-cluster

KX̃k−1,Ñ
=
{((

x
(i)
k−1|1,...,k−1,n

(i)
k−1

)
,J (1,2)

(
α
(i)
k−1|1,...,k−1, α

(i)
k−1|∅

))
: i = 1, . . . ,m

}
(6.36)
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consisting of m μ-nodes only.

Finally, this joint μ-cluster is propagated according to Eqs. (6.29). By Eq. (5.58), this

results in the prediction μ-cluster

Xk|1,...,k−1 =
{(

x
(i)
k|1,...,k−1, α

(i)
k|1,...,k−1

)
: i = 1, . . . ,m

}
, (6.37)

where the new particle positions are given by

x
(i)
k|1,...,k−1 = f

(
x
(i)
k−1|1,...,k−1,uk−1,n

(i)
k−1

)
, (6.38)

and the corresponding particle memberships are given by

α
(i)
k|1,...,k−1 = J (1,2)

(
α
(i)
k−1|1,...,k−1, α

(i)
k−1|∅

)
(6.39)

for i = 1, . . . ,m, respectively. Again, despite the general applicability of this assumption,

this implementation does not rely, e.g., on the (quasi-)vacuousness of πÑ , which would,

however, lead to the admissibility of the NI-Π-copula J (1,2) = J NI.

6.2.1.3 Inversion

The inversion step is straightforward to implement. For the computation of the inversion

μ-cluster

Xk|k =
{(

x
(i)
k|k, α

(i)
k|k
)
: i = 1, . . . ,m

}
, (6.40)

it is expedient to make use of the already computed particle positions from the prediction

step, and let

x
(i)
k|k = x

(i)
k|1,...,k−1 (6.41)

for i = 1, . . . ,m. Furthermore, evaluating Eq. (6.30) at theses particle locations directly

yields the corresponding particle memberships

α
(i)
k|k = πW̃

(
yk − g

(
x
(i)
k|k
))

(6.42)

for i = 1, . . . ,m.

6.2.1.4 Update

Since the particle positions obtained in the prediction and inversion step are the same

by construction, the updating step is implemented with little effort. The prediction and

inversion μ-clusters are combined into the updated μ-cluster

Xk|1,...,k =
{(

x
(i)
k|1,...,k, α

(i)
k|1,...,k

)
: i = 1, . . . ,m

}
(6.43)

under the UI-Π-copula according to Eq. (6.31) yielding the same particle positions

x
(i)
k|1,...,k = x

(i)
k|1,...,k−1 = x

(i)
k|k (6.44)
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and the updated particle memberships

α
(i)
k|1,...,k = J UI

(
α
(i)
k|1,...,k−1, α

(i)
k|k
)

(6.45)

for i = 1, . . . ,m, respectively.

This constitutes a basic implementation of the recursive possibilistic filter.

6.2.1.5 Resampling

After the membership correction in the updating step, many particles with poor measure-

ment agreement indicated by low inversion memberships will exhibit updated memberships

that are also (close to) zero. Such particles bear little information—not least because their

membership can be expected to remain small throughout the remainder of the filtering

process. Therefore, they are, at most, helpful in bounding the support of the prediction

distribution of X̃. Conversely, if the inversion memberships are very high (close to one)

due to good agreement with the present measurement, the updated membership of such

particles will increase compared to the previous and predicted membership. Such particles

bear much information as they constitute the prediction regions of X̃.

It is, therefore, recommendable to include a resampling step, in which the former particles

are eliminated from the μ-cluster, and the latter are kept. One would, however, be

ill-advised to only care about the particles with maximal membership; instead, equal

emphasis should be put on all particles with non-zero membership.

A basic, but—from experience—very effective, resampling procedure that shall be used

below is given by a weighted sampling from all particles with their respective sampling

weights

λ(i) =

{
1 if α

(i)
k|1,...,k > ε1 and

λ0 otherwise.
(6.46)

for i = 1, . . . ,m, more precisely of their normalized values. That is, all particles whose

memberships exceed a certain threshold ε1 � 1 are assigned a high resampling weight. The

smaller weight λ0 � 1 assigned to the remaining particles is included for technical reasons;

otherwise, the resampling procedure might fail if no particles with high membership exist,

which can happen especially in the first few time steps of the filtering process.

The flow chart of the recursive possibilistic particle filter (RPPF) containing the funda-

mental equations for its implementation in the correct order is also visualized in Fig. 6.3.

Therein, lhs([a],m) is assumed to generate m Latin hypercube samples on [a] ∈ I(RD).

This could, however, be replaced with a call, e.g., to Sobol sampling. Since, at every time

step, the prediction, inversion and updated particle positions are the same, they need only

be computed once (in the prediction step) and are denoted by

x
(i)
k = x

(i)
k|1,...,k = x

(i)
k|1,...,k−1 = x

(i)
k|k (6.47)
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for i = 1, . . . ,m.

Initialization: X0(
x
(1)
0 , . . . ,x

(m)
0

)
← lhs([X0],m)

α
(i)
0|∅ ← πX̃0

(
x
(i)
0

)
for i = 1, . . . ,m

k ← 1

Prediction: Xk|1,...,k−1(
n

(1)
k , . . . ,n

(m)
k

)
← lhs([N],m)

α
(i)
k−1|∅ ← πÑ

(
n

(i)
k

)
for i = 1, . . . ,m

x
(i)
k ← f

(
x
(i)
k−1,uk−1,n

(i)
k−1

)
for i = 1, . . . ,m

α
(i)
k|1,...,k−1 ← J (1,2)

(
α
(i)
k−1|1,...,k−1, α

(i)
k−1|∅

)
for i = 1, . . . ,m

uk−1

Inversion: Xk|k

α
(i)
k|k ← πW̃

(
yk − g

(
x
(i)
k|k
))

for i = 1, . . . ,m

Update: Xk|1,...,k

α
(i)
k|1,...,k ← J UI

(
α
(i)
k|1,...,k−1, α

(i)
k|k
)
for i = 1, . . . ,m

yk

(Resampling)

k ← k + 1

Figure 6.3: RPPF Flowchart.

6.2.2 Other Implementations

Of course, other implementations of the (recursive) possibilistic filter are conceivable,

as demonstrated by earlier results of Hose and Hanss [HoseHanss21a]. In particular,
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one could easily replace the μ-cluster-based implementation of the particle filter by a

μ-partition-based implementation. In theory, this is achieved by exchanging the calls to

lhs for a call to fsivia and replacing all standard floating-point operations of the RPPF,

e.g. in the flow chart in Fig. 6.3, by their interval-arithmetical counterparts—if they are

available. In any case, the excellent results obtained with the RPPF cast doubt on the

actual need for such interval-based implementations—except for the obvious use case in

safety-critical systems, where a robust approach is undoubtedly preferable. Nevertheless,

experimental studies have shown that the required computational effort is far too large to

achieve the desirable real-time applicability, which is fundamental in filtering applications,

combined with insightful results in the near future. Its discussion is, therefore, left to

future scholars.

In the following, the RPPF shall be applied to an examplary dynamical system.

6.3 Application: Robot Localization

A basic application of filters can be found in robotics. In order to successfully navigate its

environment, every robot needs to be aware of its pose, i.e. its position and orientation.

This is commonly referred to as ‘localization’, and various techniques to achieve this goal,

often combined with mapping the unknown environment [Thrun07], are available. Here, a

landmark-based localization technique is proposed, following the general setup put forth

by Huang and Dissanayake [HuangDissanayake99]. The preceding chapters’ notation is

slightly over-written to conform to standard notation in robotics.

Apart from this example, the RPPF has successfully been applied to a two-state batch

reaction already [HoseHanss21b].

6.3.1 Setup

To begin, consider Fig. 6.4. The depicted differential drive robot is to be located with

respect to the inertial coordinate system {0, x0, y0, z0}. More precisely, both the robots posi-

tion rrobot = (xrobot, yrobot, zrobot) and its heading φrobot need to be inferred, where the latter

is simply the rotation (about the z-axis) of the relative coordinate system {0, xr, yr, zr}
whose x-axis points in the robots’ direction of travel vrobot. The problem is considered

to be planar, i.e. all z-coordinates are zero, and there is no rolling about the xr-axis or

pitching about the yr-axis—only yawing about the z-axis.

Assuming no-slip conditions, the (forward Euler) discretized system dynamics f of the
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x0

y0

z0, zr

rrobot Δφ(2)

Δφ(3)

Δφ(1)

Landmark 1

Landmark 2

Landmark 3

xr

yr

φrobot

rlandmark,3

rlandmark,2
rlandmark,1

vrobot

0

Figure 6.4: Localization Setup.

differential drive robot with pose xk = (xrobotk , yrobotk , φrobot
k ) are given by

xrobotk = xrobotk−1 +Δt (vk−1 + δvk−1) cos
(
φrobot
k−1

)
,

yrobotk = yrobotk−1 +Δt (vk−1 + δvk−1) sin
(
φrobot
k−1

)
and

φrobot
k = φrobot

k−1 +Δt (ωk−1 + δωk−1) ,

(6.48)

where Δt is the time step width. The forward velocity vk and the angular velocity ωk are

gathered in the contol input uk = (vk, ωk), and their respective disturbances are gathered

in the process noise nk = (δvk, δωk).

The localization is to be achieved via the L landmarks 1, . . . , L with known posi-

tion rlandmark,j = (xlandmark,j, ylandmark,j, zlandmark,j) to which the relative orientation—but

not the distance—can be measured. This is often applicable, when the sensors mounted

on the robot in order to detect these landmarks are simple cameras instead of, e.g., more

expensive radar systems. Then, the relative orientation is given by the corresponding

measurement model g, which reads

Δφ
(j)
k = mod

(
arctan

(
ylandmark,j − yrobotk

xlandmark,j − xrobotk

)
− φrobot

k + δφ
(j)
k , 2π

)
(6.49)

for j = 1, . . . , L, where wk = (δφ
(1)
k , . . . , δφ

(L)
k ) constitutes the vector of all measurement

errors. The modulo function mod ensures that the measured angle is always in [0, 2π).

This application certainly favors a mostly deterministic dynamic model because robotic

systems generally exhibit a high degree of reproducibility without any significant variation—
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except for the measurement error—rendering random dynamic effects implausible. Typi-

cally, the process noise is an expression of missing insight into the actual system dynamics

rather than of actual random behavior of the system. Still, the process noise is usually

assumed to follow a Gaussian probability distribution in standard localization techniques.

Avoiding such a precise description, it is arguably more suitable to model the process noise

by a (quasi-)vacuous possibility distribution Ñ ∼ Q([N]) on a given support [N]. This

could be interpreted both as an expression of the effect of the explicit Euler discretization

of the continuous-time dynamics and of the mismatch between the given and the actual

input that may, e.g., stem from unmodeled second-order system dynamics. Due to this

choice, one can set J (1,2) = J NI to be the NI-Π-copula.

Similarly, the initial value X̃0 ∼ Q([X0]) is modeled by a (quasi-)vacuous possibility

distribution on a given support [X0], which may be wider or smaller—depending on the

precision with which one can specify the starting pose of the robot.

Finally, the measurement error is usually well-described by an uncorrelated, zero-mean

multivariate Gaussian distribution N (0,R) with the diagonal covariance matrix

R = s2

⎡
⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦ , (6.50)

for the standard deviation s > 0. A consistent possibility distribution πW̃ is given by the

Complementary Cumulative Probability-to-Possibility Transform of Eq. (3.19), i.e.

πW̃ (wk) = 1− Fχ2(L)

(
wT
k ·R−1wk

)
= 1− Fχ2(L)

⎛
⎝ L∑

j=1

(
δφ

(j)
k

s

)2
⎞
⎠ (6.51)

for all wk ∈ RL, where Fχ2(L) is the CPF of the χ2-distribution with L degrees of freedom.

6.3.2 Simulation

In the following, a simulation with the remaining specifications given in Table 6.1 is

discussed. Notice that the supports of the initial values and the process noise are chosen

to be very wide in order to model severe uncertainty about the dynamic model. The

initial value distribution, for instance, is vacuous with respect to the initial bearing.

The measurement error with a standard deviation of five degrees, too, implies a rather

rudimentary goniometry.

In order to achieve an eight-shaped trajectory, the forward and angular velocity are chosen

as

vk = 2 + sin

(
2πk

25

)
and ωk =

{
π
25

if k mod 100 < 50 and

− π
25

otherwise
(6.52)
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Table 6.1: Technical Specifications of Localization Simulation.

Time Step Width Δt = 1

True Initial Position rrobot
0 = (0, 0, 0)

True Initial Orientation φrobot
0 = π

4

Landmark Position 1 rlandmark,1 = (−20,−20, 0)

Landmark Position 2 rlandmark,2 = (0, 10, 0)

Landmark Position 3 rlandmark,3 = (20, 0, 0)

Initial Value Support [X0] = [−1,+1]× [−1,+1]× [−π,+π]
Process Noise Support [N] = [−1

2
,+1

2
]× [− π

36
,+ π

36
]

Measurement Error Standard Deviation s = π
36

Particle Number m = 2 · 103

Resampling Weight λ0 = 10−3

Resampling Tolerance ε1 = 10−3

for all k ≥ 0. A realization of this trajectory, shown in Figure 6.5, and the corre-

sponding output signals (additionally perturbed by the measurement error) are shown

in Figure 6.6. For this simulation, the system dynamics are perturbed by the system-

atic error nk = (− 1
10
, π
180

) for all k ≥ 0 in order to showcase the ability of the RPPF

to deal with such extreme cases of imprecision; any Gaussian probability distribution

would undoubtedly be ill-suited to model this kind of process noise, but as long as the

actual realizations of the process noise reside in [N], the RPPF will be perceptive. The

unperturped reference trajectory is also shown in order to demonstrate the detrimental

effect this noise has on the trajectory. Finally, the measurement error is simulated from a

Gaussian distribution N (0,R) with the assumed covariance matrix.

−30 −20 −10 0 10 20 30 40 50

−20

0

20

40

x

y

rrobot

rrobot

rlandmark

Figure 6.5: Robot Trajectory.
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Δφ
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k

Δφ
(3)
k

Figure 6.6: Output Signal.

Finally, the RPPF is applied to this in- and output sequence.

The results of the initialization at k = 0 and the prediction, inversion, updating and

resampling step at k = 1 and k = 2 are exemplarily shown in Fig. 6.7. The x- and y-

coordinates of the particles indicate the robot position, and the arrows indicate the robot

bearing. The particle membership is encoded by its color.

The RPPF behaves as expected: In particular, the inversion step identifies those particles

resulting from the prediction of the initial Latin hypercube samples that produce outputs

commensurate with the first measurement. The updating step combines the two obtained

memberships and assigns higher memberships to these particles and quasi-zero memberships

to all other particles with poor measurement agreement. Finally, the resampling step

selects the particles with a high updated membership for re-use in the following prediction.

The full RPPF iteration up to K = 100 at ten selected time steps is visualized in Fig. 6.8.

The RPPF can extract the information about the robot’s current pose that is contained in

the statistical model and the in- and output sequence, and it can give reliable estimates of

the current robot position. In particular, regions with high membership typically contain

the true system state but, the farther the robot moves away from the landmarks, the worse

the estimates become because, there, imprecisions in angular measurements have a more

detrimental effect, and vice versa.

For reference, the—in practice, unknown—true pose of the robot shown in Fig. 6.5 is also

evaluated, i.e. it is added to the μ-clusters as the (m+ 1)-th particle. Its memberships

are shown in Fig. 6.9. The true system pose does not always exhibit high memberships,

insteady they are rather evenly distributed on [0, 1] with a tendency towards higher values

as indicated by the empirical CPF shown in Fig. 6.10, which must—due to the guaranteed

perceptiveness of the RPPF—be approximately (super-)uniform. The exhibited ‘slack’

indicates a certain degree of conservatism in this approach, i.e. a lack of efficiency and

may be explained by the very general methods employed for constructing joint possibility
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distributions and the conservative uncertainty descriptions. Nevertheless, it successfully

proves the general feasibility and, more importantly, the applicability of the RPPF.
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(a) Initialization at k = 0.
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(b) Prediction at k = 1.
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(c) Inversion at k = 1.
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(d) Update at k = 1.
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(e) Resampling at k = 1.
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(f) Prediction at k = 2.

Figure 6.7: Basic filtering steps at the beginning of the localization simulation.
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Figure 6.9: Memberships of True System Pose.
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Figure 6.10: Empirical Membership CPF of True System Pose.
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Chapter 7

Conclusion and Outlook

The whole future lies in uncertainty: live

immediately.

Seneca, On the Shortness of Life

To summarize this thesis, possibility theory is a powerful and intuitive framework for

reasoning with imprecise probabilities. This includes not only their description and

propagation but also statistical inference in the form of Π-IMs. A possibilistic analysis

corresponds to an analysis of nested random sets, or α-cuts, whose membership levels can

encode various types of information, e.g. IP descriptions and data-dependent confidence or

predictions. The membership function is the fundamental tool in any possibilistic analysis,

and the μ-transform provides a general rule for obtaining it. Its correct manipulation also

constitutes most of the calculus of possibility theory and is one of the core topics of this

thesis, in particular the membership extension. The numerical implementation of these

operations is straightforward and allows for a simple application to filtering problems.

Possibility theory can also be summarized differently. Considering that consistency may be

understood as a general concept of stochastic dominance of CPFs and that the possibilistic

calculus fundamentally depends on the computation of suprema, one can express the tenet

of possibility theory as ‘integrate first, then optimize’. The first part of this statement

is a direct reference, e.g., to the μ-transform, which integrates (imprecise) probability

distributions on the sublevel sets of the plausibility function in order to project them

onto the possibility space. The second part refers to the extension principle, which is—in

essence—a mathematical program where the information, in the form of data and (implicit,

explicit, or inverse) relationships is written into the constraints, and the possibilistic

description constitutes the objective function to be maximized.

It is conjectured that this principle also obtains in a more general form, e.g. including

other types of information—a claim that is also rooted in the observation that the same
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calculus applies to imprecise variables and unknown parameters alike and can, potentially,

also be extended to other mathematical objects.

The goal of this thesis has been to provide a theoretical foundation of possibility theory and

possibilistic statistics. Nevertheless, much remains to be explored to better understand its

full potential and for it to mature into a universal framework for uncertainty quantification.

Some key questions that have not been answered in this thesis, but appear to be promising

directions of further research, shall briefly be outlined in the following.

1. Based on Neumaier’s idea of clouds [Neumaier04], Destercke et al. observe that a

p-box is essentially equivalent to the intersection of the credal sets of two possibility

distributions [DesterckeDuboisChojnacki08]. This idea may be spun further when

considering conjunctions of three, four, or more possibility distributions. Similar to

how convex sets can be approximated with increasing precision by the intersection

of more and more half-spaces, this would allow one to describe arbitrary credal sets

with increasing specificity. The fundamental tool for such possibility boxes would

be a vector-valued elementary possibility function π : Ω → [0, 1]D. The possibilistic

calculus would still apply on each individual possibility function π1, . . . , πD contained

therein, but this could potentially lead to tighter bounds on upper and lower

probabilities and expectations.

2. Unfortunately, the reliability level in the μ-transform cannot be interpreted as a

probability of lower specificity or consistency, but numerical experiments exhibit

favorable properties in this respect. By considering multinomial Π-IMs instead of

individual binomial Π-IMs, it could be possible to obtain better theoretical guarantees

regarding the consistency of the obtained percentage sets.

3. The RPPF provides an entry to a rich field of statistical analysis in dynamical

systems. Preliminary results suggest that it is straightforward to use the information

contained therein, e.g. for predicting collisions or avoiding them. This leads directly

to the statistical discipline of decision-making, which this thesis has not covered.

Nevertheless, the RPPF may be connected to existing possibilistic controller synthesis

methods [MäckHoseHanss17, HoseMäckHanss18, HoseMäckHanss19b].

Finally, the field of possibilistic statistics offers much room for further exploration.

4. This thesis has revealed many connections between possibilistic and frequentist

statistics and some similarities to fiducial and likelihoodist inference. What remains

to be investigated is the link of possibilistic statistics to Bayesian inference. For

instance, it seems promising to investigate whether Bayesian updating under certain

types of priors is accounted for by a Π-IM.
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5. Most of the results in this thesis are exact or conservative, which is certainly ad-

vantageous. Since possibilistic statistics, as presented here, is a very young field

with many discoveries to be made, one should, primarily, be interested in finding

more results of this kind. It is, however, conjectured that approximate methods

could further simplify and speed up possibilistic inference if exact or conservative

solutions prove to be problematic or difficult to obtain. To this end, surrogate

models could be used to derive approximate Π-IMs, and modeling the approxi-

mation error by suitable (quasi-)vacuous possibility distributions would still allow

for valid inference. A natural choice for such surrogates is Interval Predictor Mod-

els [CampiCalafioreGaratti09] and model order reduction techniques with appropriate

error estimators [GrunertFehrHaasdonk20]. Alternatively, possibilistic bootstrapping

methods seem feasible, or standard results, such as Wilk’s theorem, could be used to

approximately evaluate the μ-transform.

6. Nonparametric Π-IMs have not been investigated in this thesis, though they have

been elsewhere [CellaMartin22]. One can, without difficulty, derive a Π-IM, e.g. of

a distribution mean from the Markov distribution, and it is likely that one may

likely be able to use other probabilisitic inequalities to obtain similar nonparametric

Π-IMs. Similarly, the formulation of nonparametric Π-PMs could be achieved with

some inspiration, e.g. from Hill’s assumption [Hill68] and previous discussions of the

‘predicting the next observation’-problem in the statistical community [Seidenfeld95].

Possibility theory is a powerful tool for uncertainty quantification, and it can be expected to

be useful in many future applications. It is also a rich field with many exciting discoveries

to be made and should, therefore, be pursued rigorously. Ultimately, however, it must also

be formulated in a more accessible fashion in order to attract practitioners. While this

goal has not yet been reached, this thesis is intended to be a step in this direction.
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Appendix A

Inclusion Functions of the

Membership Transform

In order to find an inclusion function of the μ-transform in Eq. (5.1) with respect to both θ

and v, assume that the (strictly positive and bounded) probability density function pṼ |θ
corresponding to PṼ |θ for all θ ∈ T is available, as well as its inclusion function with

respect to θ. Furthermore, assume that an inclusion function of the elementary plausibility

function is available, let [θ] ∈ I(T) and [v] ∈ I(V), and define [β] = [ρ]Ṽ |[θ]([v]).

In order to derive an upper bound of the μ-transform, it suffices to compute an upper

bound of PṼ |θ (B
+), where B+ = {ξ ∈ V : ρṼ |θ(ξ) ≤ [β]+}, since

sup
θ∈[θ],v∈[v]

πṼ |θ(v) ≤ sup
θ∈[θ]

PṼ |θ
(
B+
)

(A.1)

for θ ∈ [θ]. The inequality holds because the μ-transform is non-decreasing with respect

to ρṼ |θ(v).

Following a reweighting-based idea for the simulation of imprecise (random) variables

proposed by Fetz and Oberguggenberger [FetzOberguggenberger16], consider

PṼ |θ
(
B+
)
= EPṼ |θ

[
IB+

(
Ṽ
)]

=

∫
V

IB+ (v) pṼ |θ (v) dv

=

∫
V

IB+ (v)
pṼ |θ (v)

pṼ |θ∗ (v)
pṼ |θ∗ (v) dv = EPṼ |θ∗

⎡
⎣IB+

(
Ṽ
) pṼ |θ

(
Ṽ
)

pṼ |θ∗

(
Ṽ
)
⎤
⎦

≈ 1

m

m∑
j=1

IB+

(
Ṽ ∗
j

) pṼ |θ
(
Ṽ ∗
j

)
pṼ |θ∗

(
Ṽ ∗
j

)
(A.2)

The approximation is, again, justified by Borel’s law of large numbers for the m iid

realizations Ṽ ∗
1 , . . . , Ṽ

∗
m of Ṽ ∗ ∼ PṼ |θ∗ for all θ∗ ∈ T, e.g. for θ∗ = [θ]c. This expression
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depends on θ only through pṼ |θ(Ṽ
∗
j ), which can be replaced by the corresponding inclusion

function and box, ultimately, yielding

[
IMC
m

]+
([v], [θ]) =

1

m

m∑
j=1

IB+

(
Ṽ ∗
j

)
pṼ |θ∗

(
Ṽ ∗
j

) [p]+
Ṽ |[θ]

(
Ṽ ∗
j

)
. (A.3)

By a similar argument, one obtains

[
IMC
m

]−
([v], [θ]) =

1

m

m∑
j=1

IB−

(
Ṽ ∗
j

)
pṼ |θ∗

(
Ṽ ∗
j

) [p]−
Ṽ |[θ]

(
Ṽ ∗
j

)
, (A.4)

where B− = {ξ ∈ V : ρṼ |θ(ξ) ≤ [β]−}.
These expressions define the inclusion function

[
IMC
m

]
: I(V) × I(T) → I([0, 1]) of the

Approximate μ-transform in Eq. (5.7).
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Appendix B

Inclusion Functions of Membership

Functions

In order to find an inclusion function [μG ] : I(T) → I([0, 1]) of the μ-function μG : T → [0, 1]

corresponding to a μ-graph G on T that tightly bounds the minimum and maximum value

of μG on a box [t] ∈ I(T), the following is considered.

The function [μG]+ : I(T) → [0, 1] is straightforward to establish. The upper bound

of μG([t]) for some [t] ∈ I(T) is found to be the maximum of all μ-levels of those μ-clusters

whose μ-sets intersect with [t]. That is,

[μG]+([t]) = max
([τ ],α′)∈G:[t]∩[τ ] �=∅

α′ = sup
t∈[t]

max
([τ ],α′)∈G:t∈[τ ]

α′ = sup
t∈[t]

μG(t) (B.1)

produces the upper bound of μG([t]). Finding the lower bound

inf μG([t]) = inf
t∈[t]

μG(t) = inf
t∈[t]

max
([τ ],α′)∈G:t∈[τ ]

α′
(B.2)

is slightly more involved because two scenarios are conceivable.

� If there is at least one μ-cluster ([τ ], α′) in G such that both [t]∩[τ ] �= ∅ and [t]∩¬[τ ] �=
∅, further refinement is needed. One can bisect [t], and it follows that

inf μG([t]) = min
(
inf μG

(
[t]l
)
, inf μG ([t]u)

)
. (B.3)

� Otherwise, the μ-sets [τ ] in G must either satisfy [t] ∩ ¬[τ ] = ∅, i.e they are

superlevel sets of [t], or [t] ∩ [τ ] = ∅, i.e. they are disjoint. Gathering the former

in G ′ = {([τ ], α′) : ([τ ], α′) ∈ G ∧ [t] ⊆ [τ ]}, one obtains

inf μG([t]) = inf
t∈[t]

max
([τ ],α′)∈G:t∈[τ ]

α′

= inf
t∈[t]

max
([τ ],α′)∈G′:t∈[τ ]

α′ = max
([τ ],α′)∈G′:t∈[τ ]

α′,
(B.4)

i.e. the lower bound is the minimum of all μ-levels of the μ-clusters whose μ-sets are

supersets of [t]. If no such superset exists, the lower bound is, of course, zero.
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A corresponding procedure to recursively compute [μG]([t]) is formalized in Algorithm 3,

which follows the above deliberations. In order to avoid infinite recursions and guarantee

convergence, a technical termination criterion, the volume of [t] becoming too small in

comparison to that of the μ-sets in G∩, needs to also be introduced. The conservative

bound employed in this case, is always true because

inf μG([t]) = inf
t∈[t]

μG(t) = inf
t∈[t]

max
([τ ],α′)∈G:t∈[τ ]

α′

≥ inf
t∈[t]

min
([τ ],α′)∈G:t∈[τ ]

α′ = min
([τ ],α′)∈G∩

α′.
(B.5)

Algorithm 3: mu

input :μ-Partitions G, Input Box [t], Tolerance ελ
output :Membership Box [μ]

1 G∩ ← {([τ ], α′) ∈ G : [t] ∩ [τ ] �= ∅} // find intersecting μ-clusters

2 if λ([t])
max{λ([τ ]):([τ ],α′)∈G∩} < ελ then // technical termination criterion

3 αmin ← min{α′ : ([τ ], α′) ∈ G∩} // conservative lower bound

4 αmax ← max{α′ : ([τ ], α′) ∈ G∩} // tight upper bound

5 else if ∃([τ ], α′) ∈ G∩ : [t] ∩ ¬[τ ] �= ∅ then // find non-super-μ-set

6 [μ]1 ← mu
(
G∩, [t]l

)
// recursive call on lower subset

7 [μ]2 ← mu (G∩, [t]u) // recursive call on upper subset

8 αmin ← min
(
[μ]−1 , [μ]

−
2

)
// lower bound is min. of lower subset bounds

9 αmax ← max
(
[μ]+1 , [μ]

+
2

)
// upper bound is max. of upper subset bounds

10 else // termination criterion

11 αmin, αmax ← max{α′ : ([τ ], α′) ∈ G∩} // tight lower and upper bound

12 end

13 [μ] ← [αmin, αmax] // assembly of membership box
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Nomenclature and Notation

The following overview lists the most important symbols, mathematical conventions and

abbreviations in this thesis.

Latin Minuscules

f system dynamics

g system output equation

� absolute likelihood function

n process noise

p probability mass/density
function

q observation

u system input

w measurement noise

x system state

y system output

Latin Capitals

C stochastic/probability copula

D dimension

F cumulative probability
distribution function

I Membership Transform

J cost function

M capacity

N necessity measure

P probability measure

Q̃ imprecise output variable

Ṽ imprecise variable

Var variance

Fraktur Latin Capitals

C credal set

E expectation

M inferential model

O Optimal Imprecise-Probability-
to-Possibility Transform

P set of probability measures

S statistical model

T Imprecise-Probability-to-
Possibility Transform



216 Nomenclature and Notation

Blackboard Bold Latin Capitals

B Borel σ-field

D feature space

E nuisance parameter space

I interval/box space

N process noise space

P space of probability measures

Q observation space

R Euclidean space

U input space

V imprecise variable space

W measurement error space

X state space

Y output space

Calligraphic Latin Capitals

A superuniform possibility
distribution

C superlevel set, α-cut

D deterministic distribution

E exponential probability
distribution

G μ-graph

I indicator function

J possibility copula

K μ-cluster

M Markov/Chebychev possibility
distribution

N normal/Gaussian probability
distribution

P μ-partition

Q quasi-vacuous possibility
distribution

S sublevel set

U uniform probability distribution

V vacuous possibility distribution

Greek Minuscules

γ elementary confidence function

δ population feature

ε tolerance

η nuisance parameter

θ population parameter

κ elementary prediction function

λ Lebesgue measure

μ membership function

π elementary possibility/
(IP-)description distribution

ρ elementary plausibility function

φ explicit relationship

ψ inverse relationship



Nomenclature and Notation 217

Greek Capitals

Δ triangular possibility
distribution

Θ parameter space

Λ relative likelihood function

Ξ implicit relationship

Π possibility measure

Σ σ-field

Ω universal set

Relations

� plausibility order

 inclusion order

� stochastic order

∼ distributed as

∨ disjunction

∧ conjunction

Mathematical Conventions

A function f : X → Y with a set-valued argument X ⊆ X is to be understood as the

set of all images f(X) = {f(x) : x ∈ X} and, similarly, f−1(Y ) = {x ∈ X : f(x) ∈ Y }
for Y ⊆ Y.

The definite integral of a real function f : R → R, where the bounds are reversed is

understood as
∫ a
b
f(x)dx = −

∫ b
a
f(x)dx for a, b ∈ R and a < b.

The complement of the set X ⊆ X is indicated by ¬X = {x ∈ X : x /∈ X}.
The maximum and supremum of the empty set ∅ are defined to be max ∅ = sup ∅ = 0.

Vectors x ∈ RD and matrices M ∈ RD×D are written in bold letters and their transpose

is denoted by xT and MT, respectively, and the i-th element of x is denoted by xi
for i = 1, . . . , D.
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Abbreviations

CNF cumulative necessity distribution function

CPF cumulative probability distribution function

CΠF cumulative possibility distribution function

FSIVIA fuzzy set inversion via interval analysis

iid independent and identically distributed

IM inferential model

IP imprecise probabilities

IP-Π-transform Imprecise-Probability-to-Possibility Transform

LTI linear time-invariant

MEVIA membership extension via interval analysis

NI non-interaction

p-box probability box

P-Π-transform Probability-to-Possibility Transform

P-Γ-transform Probability-to-Confidence Transform

RPPF recursive possibilistic particle filter

SI strong independence

UI unknown interaction

μ-transform Membership Transform

Π-copula possibility copula

Π-IM possibilistic inferential model

Π-PM possibilistic predictor model
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